FLOWSERVE

D20-series Compact Digital
Positioner
AllOM000856-05 (EN/A5) - 10/22

USER INSTRUCTIONS

Installation
Operation
Maintenance

Contents

1. Introduction 3
2. Control 26
3. Warning 4
Special Conditions for Safe Use 4
Maintenance/service 5
4. Storage 6
5. Description 7
6. Type sign example 8
7. D20 Model code 9
8. Installation 10
Removal of cover 10
Airpreparation 10
Mounting 11
For Linear actuator 13
Mounting the positioner 13
Mounting of the PMV D20 positioner on a linear
14
14
pneumatic actuator
pneumatic actuator
Mounting the stem clamp bracket and take-off arm 14
Follower pin adjustment 15
Flowact direct mountingpin 16
Rotary actuators 17
Mounting the PMV D20 positioner on a quarter-turn actuator (closed or open by spring)17
Rotary actutaors VDI/VDE 3485 (Namur) 17
Electrical connections 20
10.6 Change of gain setting 23
Set of Direct or Reverse action 24
Show gain setting 24
Menus and pushbuttons 26
Menu indicator 27
Basic Menu 28
Full Menu 35
9. Maintenance/service 43
10. Trouble shooting 48
11. Technical data 49
12.Dimensional Drawing 51
12. Spare parts 52
14.Applied Standards 54
15.Control Drawing 55
13. Contact List 58

1. Introduction

The D20-series is a digital positioner designed primarily for controlling modulating valves. The positioner can be used with single acting actuators with either rotary or linear movement.

The D20-series can be equipped with modules for limit switches and pressure gauges. The modules can be factory assembled before delivery or fitted later.

The modules for limit switches can contain one of the following:

- Two mechanical contacts
- Two proximity switches
- Two inductive sensors

See page 20 and 47 for more options available

Only authorized technicians are allowed to work with certified products.

2. Warning

仓

Special Conditions for Safe Use

The enclosure of PMV D20-series Intrinsically safe version is made of aluminium and any impact or friction caused by external objects shall be avoided in the application. Control Drawing D4-086C contains the parameters for intrinsic safety. The intrinsic safe circuits D20-series is insulated from earth and complies with the dielectric strength test of 500 V ac.

Special Conditions for Safe Use (ATEX/IEC specific)

The surface area of the plastic parts on the cover exceeds the limits specified in EN 60079-0 for II 1G (EPL Ga) for gas group IIC and intensive rubbing or brush charging should be avoided when used in an IIC explosive atmosphere.

In a hazardous environment where there is a risk of explosion, electrical connections must comply with the relevant regulations.
Do not disconnect equipment unless area is known to be non-hazardous. or; read, understand and adhere to the manufacturer's live maintenance procedures. To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing,

Substitutions of components may impair suitability for hazardous (classified) locations.

Special Conditions for Safe Use (FM specific)

For Intrinsically Safe applications: Use linear barrier only.
Potential risk of sparking from aluminum alloy enclosure. In Division 1 or Zone 0 installations, equipment shall be installed in such manner as to prevent the possibility of sparks resulting from friction or impact against the enclosure.

Potential risk of electrostatic sparking. Clean only with a damp cloth.

Environmental requirements

Some switch options may decrease the temperature working range se Control Drawing D4-086C for details.

Maintenance/service

Warning!

When upgrading electronically parts inside a PMV positioner approved for installation in Hazardous locations special procedures apply, permission from PMV/Flowserve is required prior to the start of work. Please contact a Flowserve office for information regarding proper procedures.
www.pmv.nu or infopmv@flowserve.com

Warning!

Always turn off the air and electrical supplies before starting any work

General safety

Safety instruction

Read the safety instructions in this manual carefully before using the product. The installation, operation, and maintenance of the product must be done by staff with the necessary training and experience. If any questions arise during installation, contact the supplier/sales office before continuing work.

Warning

The valve can open or close very quickly when in operation and, if handled incorrectly, may cause damages to fingers. There may also be unintentional effects due to it fully opening or shutting off the flow in the process pipe. Please note the following:

- If the input signal fails or is switched off, the valve operates quickly to its default position.
- If the compressed air supply fails or is turned off, rapid movements can occur.
- The valve is not controlled by the input signals when in the Out of Service mode. It will open/ close in the event of an internal or external leak.
- If a high value is set for Cut off, fast movements can occur.
- When the valve is controlled in the Manual mode, the valve can operate quickly.
- Incorrect settings can cause self-oscillation, which can lead to damage.

Important

- Always turn off the compressed air supply before removing or disconnecting the air supply connection or the integral filter. Remove or disconnect with care as air connection "C-" is still under pressure even after the air supply is turned off.
- Always work in an ESD (Electrostatic Discharge) protected area when servicing the Printed circuit boards (PCB's). Make sure the input signal is switched off.
- The air supply must be free from moisture, water, oil and particles according to DIN/ISO 8573-1-2001 3.2.3

3. Storage

General

The D20-series positioner is a precision instrument. Therefore, it is essential that it is handled and stored in the correct way. Always follow the instructions in this IOM!

Note: As soon as the positioner is connected and started, internal air venting will provide protection against corrosion and prevent the ingress of moisture. For this reason, the air supply pressure should always be kept on unless repair/maintenance work of the positioner, actuator or valve equipment is in progress.

Storage indoors

Store the positioner in its original packaging. The storage environment must be clean, dry, and cool (Temp $-15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 5^{\circ} \mathrm{F}$ to $77^{\circ} \mathrm{F}$).

Storage outdoors or for a longer period
If the positioner must be stored outdoors, it is important that all the cover screws are tightened and that all open ports/connections are properly sealed and/or plugged.

The red shipping plugs are not intended as a permanent outdoor plug. The unit should be packed with a desiccant (silica gel) in a plastic bag or similar, covered with plastic, and not exposed to sunlight, rain, or snow.

4. Description

PMV D20-series is a compact digital positioner that suits both linear and rotary actuators. It's modular and flexible design allows mounting according to the both standard VDI/VDE 3845 for rotary and IEC 534-6 \& Flowtop for linear actuators with integrated tubing.

Further on, PMV D20/D22 offers feedback capability with optional plug in switches, HART communication and auto calibration for simple and trouble free commissioning.

5. Type sign example

Ratings and Marking

D20 ATEXIEC certification temperature range and marking:
II 1 G Ex ia IIC T4 Ta $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ga
D20 US/CA FM certification FM18US0180X and FM18CA0082X marking:
IS CI. I Div. 1 Gr. A-D T4
Cl. I Zone 0 AEx/Ex ia IIC T4 Ga
CI. I Div. 2 Gr. A-D T4
CI. I Zone 2 IIC T4 (US Only)

Listing Company :
PMV Automation AB
Korta Gatan 9
SE-171 54 SOLNA
SWEDEN

6. D20 Model code

A $=$ Model no
D20 Single button interface, LED status
D21 Single button interface, LED status and LCD
D22 Full LCD menu, 5 button UI, LED status

B = Approval, Certificate
D General purpose version
A Intrinsically Safe Ex ia ATEX
B Intrinsically Safe Ex ia INMETRO
N Intrinsically Safe Ex ia CCC
M Intrinsically Safe Ex ia CCOE
F Intrinsically Safe Ex ia FM
C = Function
S SA D20 E/P (poppet valve)
D = Connections Air, Electrical
M $1 / 4$ " NPT air, M20x1,5 electrical
N 1/4" NPT air, 1/2"NPT electrical

$\mathrm{E}=$ Connection feature
22 Electrical conduits
T 2 Electrical conduits, threaded Aux. ventilation

$F=$ Housing material/ Surface treatment
U Aluminium/Powder coating
G = Mounting options / Shaft
09 Double D type, adaptor spindle
12 Flowtop, direct mounting, D4-As909m(D20) included
23 VDI/VDE 3845 rotary, Mounting kit not included
30 Adaptor shaft, select between 01/06/26/30/36/02/43
39 IEC 534-6, Flat D type, nut incl. Mounting kit not included

$H=$ Cover and Indicator
P V A PMV,Black cover, Arrow indicator
P V B PMV, Black cover, No indicator
FW A Flowserve, White, Arrow indicator
F W B Flowserve, White, No indicator
I = Temperature/seals
Z $\quad-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
$\mathrm{J}=$ Input signal/Protocoll
$4 \quad 4-20 \mathrm{~mA} /$ none
$5 \quad 4-20 \mathrm{~mA}$, / HART
P Profibus PA
F Foundation Fieldbus
(Not when $\mathrm{K}=\mathrm{T}$)
(Not when $K=T$)

$K=$ Feedback option, switches
$X \quad$ No feedback option
T $\quad 4-20 \mathrm{~mA}$ transmitter only $(\mathrm{J}=4,5)$
S Limit switches Mechanical SPDT
N Namur V3 type sensor, P+F NJ2-V3-N
P Limit switches Proximity SPDT
5 Slot type Namur sensor, P+F SJ2-SN
6 Slot type Namur sensor, P+F SJ2-N

Options, Add in electronics
0 No pressure sensors
M = Accessories
X No accessories
N Gauge block 1/4" NPT (2 gauges included)
$\mathrm{N}=$ Special Options
N No special options

For latest version of valid model code please see www.pmv.nu

7. Installation

Removal of cover

General purpose / Intrinsically safe
Remove cover by first loosening the screw 1 and then the two screws 2.

To install cover, first tighten the screw 1, then the two screws 2.

Tighten to $1.5 \mathrm{Nm} \pm 15 \%$.

Air Preparation

Supply air should meet requirements specified on page 5. A coalescing filter/regulator should be installed in front of the supply air connection. Connect the air supply to the filter, which is connected to the D20 positioner.

Tubing

It is recommended to use tubes with a minimum inner diameter of $\emptyset 6 \mathrm{~mm}(1 / 4$ ").

Air supply requirements
Poor quality air supply is the main cause of problems in pneumatic systems.
The air supply must be free from moisture, water, oil and particles and delivered @ 1.4-6 barg (20-85 psi)

Standard: DIN/ISO 8573-1-2001 3.2.3
Filtered to 5 Micron, dew point $-40^{\circ} \mathrm{C} / \mathrm{F}$ Oil $1 \mathrm{mg} / \mathrm{m}^{3}$ ($0,83 \mathrm{ppm}$ by weight)

The air must come from a refrigeration dried supply or be treated in such a way that its dew point is at least $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ below the lowest expected ambient temperature.

Before the air supply is connected to the positioner, we recommend the pipe/tube is opened freely for 2 to 3 minutes to allow any contamination to be blown out. Direct the air jet into a large paper bag to trap any water, oil, or other foreign materials. If this indicates that the air system is contaminated, it should be properly cleaned before continuing.

Mounting

Note: If the positioner is installed in a hazardous environment, it must be of a type approved for this purpose.

All versions of the D20 positioner have an ISO F05 footprint. The holes are used to attach the D20 to the mounting bracket B. Please contact PMV or your local distributor representative with actuator specifics for the proper mounting bracket and hardware.

The spindle shaft S09 can be used to suit various actuators in question by the use of adaptors.

It is important that the positioner's spindle shaft and the lever arms, that transfer the actuator movements, are correctly mounted. Any tension between these parts can cause incorrect operation and abnormal wear.

Spindle shafts

Note: There are many spindle options available depending on the actuator. Please contact your local PMV supplier for all options available.

Adapter drawing

Suit shaft style "09"

S9 Adaptors

For Linear actuator Mounting the positioner

1. Adjust the actuator to mid-stroke.
2. Pre-assemble the mounting bracket on the left actuator leg hand-tight with two U-bolts, nuts and lockwashers.
3. Attach the positioner to the pre-assembled mounting bracket and fasten it with two hexagon head screws and two lock washers. Check that the follower pin is inserted in the slot of the takeoff arm and the follower arm is positioned at a right angle to the outer edge of the positioner.
4. Tighten all screws and nuts.

NOTE: A slight unsymmetrical mounting increases the linearity deviation but does not affect the performance of the device. Depending on the actuator size and stroke it may be necessary to flip the take-off arm by 180° and attach it to the opposite side of the stem clamp bracket.

Mounting A
Mounting B

Yoke Actuator Mounting (according to IEC 534 part 6)

Recommended Min and Max stroke angle is $30^{\circ}-60^{\circ}$.

Basic Adjustment for a Linear Pneumatic Actuator

Mounting of the PMV D20 positioner on a linear pneumatic actuator (NAMUR / IEC 534 part 6)
The mounting of a rod actuator kit (according to IEC 534 part 6) is described in an example by using the following equipment:

Valve: Standard globe valve or equivalent
Actuator: Single-acting pneumatic actuator
Positioner: PMV D20 with mounting kit.
Pre-assembly: Valve with actuator (valve stroke is matched with the actuator stroke).

For mounting, proceed as follows:

Mounting the Follower Arm (Figures 1 and 2)

1. Unscrew the lock nut for the follower arm attachment.
2. Place the follower arm on the shaft at the back of the positioner and fasten it with the lock nut. The follower pin should point back from the positioner.

CAUTION: Maximum torque $0,25 \mathrm{Nm}$ (0,18 ft-lbs).

Mounting the stem clamp bracket and take-off arm

1. Attach the stem clamp bracket to the stem clamp and fasten it with two hexagon socket screws and lock washers.
2. Attach the take off arm to the stem clamp bracket and fasten it with a hexagon socket capscrew and a washer. Ensure the take-off arm slot is centered.

Mounting on a Rod Actuator (IEC 534 part 6)

Follower pin adjustment

The positioner follower pin must be adjusted to match the valve stroke in the following manner:

1. Adjust the follower pin (STROKE + 10 mm) as indicated on the follower arm's embossed scale.
2. Exhaust the actuator.
3. Loosen the follower pin and shift it along the follower arm until the control marking on the feedback gear is horizontal (points to the center of the feedback potentiometer). Fasten the follower pin in this position.
4. Adjust the actuator to full stroke and check the follower pin adjustment the same way as described in step 3. As the actuator strokes, the rotation of the feedback gear should be between the inner control markings. If the length of rotation is outside the control markings, adjust the follower pin farther out on the feedback lever to reduce the angle of rotation.

NOTE: Stroke the actuator carefully and ensure the follower arm does not interfere with valve parts, actuator or positioner. Do not adjust the follower pin too near to the slot end of the takeoff arm.

The minimum lateral distance should be approximately 5 mm (0,2 inches) to prevent bending of the feed-back mechanisim.

Rotary actuators

Flowact direct mounting

The positioner follower pin must be adjusted to match the valve stroke in the following manner:

1. Adjust the follower pin (STROKE + 10 mm) as indicated on the follower arm's embossed scale.

Pin plate and pin configuration for different actuators and stroke

10 mm stroke 252

20 mm stroke 252

20 mm stroke 502

40 mm stroke 502

Mounting the PMV D20 positioner on a quarter-turn actuator (closed or open by spring)

The mounting of a pneumatic double-piston partturn valve actuator (in accordance with VDI/VDE 3845) is described as an example by using the following equipment:

Quarter-turn valve actuator: Rack \& pinion or scotch yoke, closed or open by spring.

Rotary actutaors VDI/VDE 3485 (Namur)

Mount bracket 1 to positioner. Secure with 4 x
 M6 screws 2. 2.5 nm (1.8 ft lbs)

Fit positioner on actuator and secure with 4 x screws 3.

Install tubing 4 between actuator and positioner.

Gauge block
Gauge blocks are available for D20 series with $1 / 4$ " NPT air connections. To install, ensure seals are aligned, then use $3 \mathrm{Nm}(2.2 \mathrm{lb} \mathrm{ft})$ of torque when fastening the gauge block to the positioner using the two screws supplied with the kit.

Gauge blocks are available for D20 series with 1/8" NPT

Air Connection

Single acting positioner, Direct function Actuator with closing spring When the control signal increases, the pressure C+ to the actuator is increased. The valve stem moves upward and rotates the positioner spindle counterclockwise. When the control signal drops to zero, C+ is vented and the valve closes.

Reverse function
Actuator with opening spring
When the control signal increases the pressure C+ to the actuator is increased. The valve stem moves downward and the positioner spindle rotates clockwise. When the control signal drops to zero, C+ is vented and the valve opens.

Electrical connections

Terminal block diagram for the D20-series. The terminal block (right) for the positioner is accessible when the aluminium cover is removed. The D20-series digital positioner has been designed to operate correctly in electromagnetic (EM) fields found in typical industrial environments. Care should be taken to prevent the positioner from being used in environments with excessively high EM field strengths (greater than $10 \mathrm{~V} / \mathrm{m}$). Portable EM
devices such as hand-held two-way radios should not be used within 30 cm of the device. Ensure proper wiring and shielding techniques of the control lines, and route control lines away from electro-magnetic sources that may cause unwanted noise. An electromagnetic line filter can be used to further eliminate noise. In the event of a operability. It may be necessary to recalibrate the D20-series positioner to restore operation.

Use a coin to remove the black plug

Warning! In a hazardous environment where there is a risk of explosion, electrical connections must comply with the relevant regulations.

Switch option		Optional board					
		5	6	7	8	9	10
X	No feedback option	na.	na.	na.	na.	na.	na.
T	4-20 mA transmitter, no switches	na.	na.	na.	na.	na.	na.
5	Slot type Namur sensor, P+F SJ2-SN	-	+	na.	-	+	na.
6	Slot type Namur Sensor, P+F SJ2-N	-	+	na.	-	+	na.
N	Namur V3 type sensor, P+F NJ2-V3-N	-	+	na.	-	+	na.
P	Limit switches Proximity SPDT	NO	NC	Com	NO	NC	Com
S	Limit switches Mechanical SPDT	NC	NO	Com	NC	NO	Com
Mounting options							
RM	Remote Board (Fedback and switch option =x or T)	na.	na.	na.	CCW	RA	CW

Connection of mechanical and proximity switches. (S,P)

Connection of Namur switch. ($N, 5,6$)

Limit switch calibration

- Losen screws (1) and adjust cams.
- Adjust lower cam first and then upper cam
- Tighten screws (1)
(1)

Calibration D20/D21
Apply 4 mA current as input signal.Press the button for 5 sec . (Release the button when the three LED:s start to flash alternately). The calibration starts, the actuator goes go to max. and min. position and calculates the control parameters.

The Calibration procedure will take between 30 seconds and some minutes depending on actuator size.

The three LED:s will flash alternately during calibration.

After calibration all the three LED:s are lit for a moment.

A successfull calibration is indicated by yellow or green LED:

G
Green LED flashes = In service

Y
Yellow LED flashes = In service. The unit vents in max or min position.

An unsuccessfull calibration is indicated by error codes:

R D20 does not reach the setpoint.

Set of Direct or Reverse action

> Note! For safety reason, this operation has to be done max 5 minutes after calibration. If time has run out, or if power is disconnected during the five minutes, perform a new cali-bration, before changing the direction.

Run 4 mA . If valve is in right position, then check the position over the whole range $(8,12,16$ and 20 mA).

\bigcircx3 Check operation at 4-8-12-16 and 20 mA

Show gain setting

If the actuator position is unstable or selfoscillating after calibration, the gain can be adjusted.

Gain can be set from A (lowest) to G (highest). Default is \mathbf{D}.

To show the current gain setting, press the button four times.

To indicate the current setting, the LEDs flashes according to the following:

LED show:	YRR	G (Highest)
LEDs show:	YR Y	F
LEDs show:	YRG	E
LEDs show:	Y G	D Default
LEDs show:	YGG	C
LEDs show:	YGY	B
LEDs show:	YGR	A (Lowest)

The gain code sequence is repeated 5 times.

Button functions:

Press 5 sec $=$ Calibration
Press x3 = Direct/reverse action
Press $\mathbf{x 4}$ = Show gain setting
Press $\mathbf{x 5}$ - x11 = Change gain setting

To indicate that a command is accepted,
 the three LED:s light up.

Change of gain setting

To lower the gain, press the button: 7, 6 or 5 times ($5=$ lowest).

To increase the gain (if actuator is moving to slow).

Press the button: 9, 10 or 11 times (11= highest) to increase the gain.

The LED:s flashes alternately when the button is pressed. After gain change the LED:s show the gain code five times.

The default value after first calibration is \mathbf{D}.
After this, the gain settings are finished.

$\bigcirc \times 10 \quad F$

$\bigcirc x 7$
$\bigcirc x 6 \quad B$
〇 x5 A (Lowest)

D20/D21

- Press and hold button while switching on power to the D20, keep the button pressed for 6 sec. The eeprom will now be erased, and then all three LEDs are lighted. The LEDs will start to flash yellow-red. This starts FACTORY MODE!

To calibrate 4-20 mA input signal

- Apply 4.0 mA input signal and then push the button three (3) times until all LEDs are lighted. The LEDs will now start flash yellow-red again.

Apply 20.0 mA input signal and then push the button three (3) times until all LEDs are lighted.

To calibrate 4-20 mA transmitter output signal Note! If no transmitter board is installed the LEDs will start flash yellow-yellow and the unit is ready for continued calibration.

If there is a transmitter board installed the LEDs will start flash yellow-green.

The feedback transmitter output signal on pin 9 and 10 will now follow the input signal instead of the position. Apply 4.0 mA input signal. Measure the output signal and adjust the input signal up/ down until the output signal is 4.0 mA . Push the button three times until all LEDs are lighted. The unit will now start to flash yellow-green again.

The output signal on pin 9 and 10 will continue to follow the input signal instead of the position. Apply 20.0 mA input signal. Measure the output signal and adjust the input signal up/down until the output signal is 20.0 mA . Push the button three times until all LEDs are lighted.

The LEDs will start flash yellow-yellow and the unit is ready for continued calibration.

Press the button for 5 sec until the LEDs start alternating, D20 starts to calibrate stroke.

After calibration the unit will start running in normal operation.

8. Control

Menus and pushbuttons

The positioner is controlled using the five pushbuttons and the display, which are accessible when the aluminum cover is removed.

For normal functioning, the display shows the current value. Press the ESC button for two seconds to display the main menu.

Use the pushbuttons
 to browse through the main menu and the sub-menus.

The main menu is divided up into a basic menu and a full menu.

Other functions

ESC
Exit the menu without making any changes (as long as any changes have not been confirmed with OK).

FUNC
To select function and change parameters.
OK
To confirm selection or change of parameters.

MENU INDICATOR

Displays the position of the current menu row in the menu.

IN SERVICE

The positioner is following the input signal.
This is the normal status when the positioner is working.

OUT OF SERVICE

The positioner is not following the input signal. Critical parameters can be changed.

MANUAL

The positioner can be stroked manually using the pushbuttons. See section "Man/Auto", page 25.
out of SERVICE MANUAL

UNPROTECTED

Most of the parameters can be changed when the positioner is in the "Unprotected" position. However, critical parameters are locked when the positioner is in the "In service" position.

LED color ($\mathrm{R}=$ Red, $\mathrm{Y}=$ Yellow, $\mathrm{G}=\mathrm{Green}$)

Codes during In Service			
		R	Actual valve position deviates from requested/set position
		Y	Fully opened/closed valve using Cut Off (= OK)
		G	Controlling valve position (= OK)

Codes during Out of service			
	R	Y	Input signal not calibrated
	Y	G	Feedback signal not calibrated
	Y	Y	Out of Service ($=0$ K)

Calibration alarm			
	R	G	No feedback movement. Check linkage from actuator to positioner
	R	Y	No air available. *(alarm available only when pressure sensors installed)
R	G	G	No pot connection. Check pot cable inside positioner.
R	Y	Y	No air relay. Check cable inside positioner.
R	Y	G	Pot not calibrated. Go to Calibrate->Expert->Pot on LCD menu.

Menu indicator

There are indicators at both sides of the display window and they indicate as follows:

Flashing in position Out of service

FULL MENU MAN/AUTO

FULL MENU
 CALIBRATE

FULL MENU

Menus
To display the menus you can select:

- Basic menu, which means you can browse through four different menu items
- Full menu, which comprises ten steps. Use the Shift Menu to browse through the menu items

Full Menu can be locked out using a passcode.
The main menus are shown on the next page and the sub-menus on the subsequent pages.

Changing parameter values

Change by pressing \rangle until the desired figure is flashing.

Press $\frac{\Delta}{\square}$ to step to the desired figure. Confirm by pressing OK.

A change can be undone by pressing the ESC button, which returns you to the previous menu.

Basic Menu
Menu system

First start

"Calibrate" is displayed in the basic menu automatically, the first time power is applied. It can be selected from the basic or full menu at any time.

Tip! Instant quick calibration

The D22 can be instantly calibrated by pressing the top + bottom buttons for 5 seconds (see picture). This function is available from any menu position.

A complete auto-calibration will take a few minutes depending on size of actuator and includes end limit calibration (zero and span), auto-tuning (dynamically sets the control parameters for the actuated package the positioner is controlling) and a check of the movement speed. Start the automatic calibration by selecting Auto-Cal and then answer the questions in the display by pressing $O K$ or the respective arrow.

Calibration error messages

If a fault occurs during calibration, one of the following error messages can be displayed:

No movement/press ESC to abort

Typically the result of an air delivery issue to the actuator, a stuck valve or actuator, or incorrect mounting and/or linkage arrangement. Check for proper supply air to the positioner, pinched tubing, proper actuator sizing, proper linkage and mounting arrangement.

Pot uncalibrated/press ESC to abort

The potentiometer is out of range. The potentiomenter is aligned using the Calibrate Expert cal - pot Menu. The calibration sequence must be restarted after the fault is corrected.

Instant quick calibration
First start, Profibus PA
For Profibus PA, connect the input signal at pos 1 and 2 on the terminal block. See Electrical connections in the manual.

In the SETUP/Devicedata/Profibus: change the address from 126 to any number between 1-125. Never use the same number with more than one unit. Install values in failsafe mode, for communication when loss of signal.
Calibrate the unit.
GSD files are available at our web-page
www.pmv.nu

To install the D20_PROFIBUS.DDL file to Siemens SIMATIC PDM.

1. Move the files to the directory where the Devicelnstall.exe is located.
2. Run DeviceInstall.exe

Parameter	Description		BYTE
SP	Setpoint	The SP has 5 bytes, 4 bytes for the float value and one status byte. The status byte needs to be 128 (0x80Hex) or higher for the D20 to accept it.	4+1=5
READBACK	Position	The READBACK has 5 bytes, 4 bytes for the float value and one status byte.	$4+1=5$
POS_D	Digital position	Returns actual position as a digital value with definitions as below $0=$ Not initialized 1 = Closed $2=0$ pened 3 = Intermediate	2
CHECKBACK		Detailed information of the device, coded bit wise. Several messages can occur at the same time.	3
RCAS_IN	Remote Cascade	The RCAS_IN has 5 bytes, 4 bytes for the float value and one status byte.	$4+1=5$
RCAS_OUT	Remote Cascade	The RCAS_OUT has 5 bytes, 4 bytes for the float value and one status byte.	$4+1=5$

Status Byte Table

MSB						LSB
00	0	0	1	0	x	X
00	0	0	1	1	X	X
00	0	1	0	0	X	X
00	0	1	1	1	x	X
10	0	0	0	0	x	X
10	0	0	0	0	0	0
10	0	0	1	0	0	1
10	0	0	1	0	1	1
10	0	0	1	1	0	1
10	0	0	1	1	1	1

Meaning D20 info

Not connected
Device failure
Sensor failure
Out of service
Good - Non cascade

OK
Below low limit Lo Advisory alarm
Above high limit $\mathrm{Hi} \quad$ Advisory alarm
Lo-Lo
$\mathrm{Hi}-\mathrm{Hi}$

PROFIbus PA module failure No sensor value
AI Function Block in 0/S mode Measured value OK
All Alarm values used

Critical alarm
Critical alarm

Example SP = 43.7\% and 50\%

Float	Hex	Status
43.7	42 2E CC CD	80
50.0	42480000	80

(FF) Foundation Fieldbus function blocks

 Function blocks are sets of data sorted by function and use. They can be connected to each other to solve a control process, or to a controlling DCS. To get a good introduction and understanding of FF look at www.fieldbus.org and download the "Technical Overview" from the About FF pages.
(TB) Transducer Block

The TB contains unit specific data. Most of the parameters are the same as parameters found on the display. The data and the order of data varies between different products. The AO-block setpoint (SP) and process value (PV) parameters are transceived to the TB through a channel. The TB has to be in AUTO for the AO-block to be in AUTO.

The positioner has to be in menu-auto mode and in service to be controlled from the fieldbus. If the positioner is placed in menu-manual mode then the transducer block will be forced to (LO) local override. In this way a person in the field will be able to control the positioner from the keypad, without collision with a control loop.

(RB) Resource Block

The RB is a set of parameters that looks the same for all units and products. The values of the RB define unit information that concerns the Fieldbus Protocol such as MANUFAC_ID which informs the unique manufacturer id. For Flowserve it is $0 \times 464 \mathrm{C} 53$. The RB has to be in AUTO for the AO-block to be in AUTO.

(AO) Analogue Output Block

The AO follows Fieldbus Foundation's standard on content and action. It is used for transferring (SP) setpoints from the bus to the positioner.

CAS_IN (cascade input) and RCAS_IN (remote cascade input) are selected as inputs to the AO block depending on the MODE_BLK parameter. The selected input will be relayed to the SP parameter of the AO block. BKCAL_OUT (back calculated output) is a calculated output that

can be sent back to a controlling object so that control bumps can be avoided. Usually the BKCAL_OUT is set to be the (PV) process value of the AO-block, i.e. the actual measured position of the valve. OUT is the primary calculated output of the AO block. During a limited action (ramping) of the AO block the RCAS_OUT parameter will supply the final setpoint and the OUT parameter will be the limited output. The transducer block is connected through a channel to the AO block. Through this channel the OUT value and SP are transceived.

In order to set the AO block to AUTO, the TB and the RB have to be in AUTO. Further the AO block has to be scheduled. Using National Instruments Configurator; scheduling can be done by adding the unit to a project and then click on the "upload to device" icon.

To write a setpoint value by hand, add Man to MODE->Permitted parameter, and then choose MODE->Target to Man. Make sure that the unit is scheduled.

Example

A typical FF block loop control might look like the following: Where the positioner is represented by the AO-block.

The contents of the menu are shown on the next page. The various menu texts are described below.

Auto-Cal	Auto-tuning and calibration of end positions
Start tune	Starts the tuning. Questions/commands are displayed during calibration. Select the type of movement, function, etc. with and confirm with OK as shown in the chart on the next page.
Lose prev value? OK?	A warning that the value set previously will be lost (not during the first auto-tuning).
Direction? Air-to-open.	Select for direct function.
Direction? Air-to-close.	Select for reverse function.
In service? Press OK	Calibration finished. Press OK to start positioner functioning. (If ESC is pressed, the positioner assumes the "Out of service" position but the calibration is retained).
TravelCal	Calibration of end positions
Start cal	Start end position calibration.
Lose prev value? OK?	A warning that the previously set value will be lost. Confirm with
	OK. The calibration sequence starts.
In service? Press OK	Calibration finished. Press OK to start positioner functioning.
	(If ESC is pressed, the positioner assumes the "Out of
service"position but the calibration is retained).	
Perform	Setting gain
Normal	100\% gain
Perform G, F, E, D, C, B, A	Possibility to select a lower gain in steps.
	Default setting is D.

Note. Original P. I. D. will always be shown in display

Feedback option (cont.)
Calibration of the 4-20 mA transmitter

Go to menu shown in diagram.
Connect mA meter I and check reading.
Adjust output signal using Up or Down key
until meter I reads 4.00 mA .
Finish by pressing OK.
Repeat the above for 20 mA .
(2)

Expert Calibration

When entering "ExpertCal" mode - walk through the list of parameters described below. Set values where applicable. Confirm by pressing OK.

Set point LO: Use the calibrator set to 4 mA (or set another value on the display). Press OK.

Set point HI: Use a calibrator of 20 mA (or set another value on the display). Press OK.

Pressure LO: Use a supply of 1.4 bar (20 psi) (or set another value on the display). Press OK. Pressure read out only possible on D20 with built in pressure sensor.

Pressure HI: Use a supply of 8 bar (115 psi) (or set another value on the display). Press OK. Pressure read out only possible on D20 with built in pressure sensor.

Transmitter: Connect 10-28 VDC. Connect an external mA meter to the loop. Read low value on mA meter and adjust with up/down key. Press OK to set low value.
Repeat procedure to set High value.
Also see video on www.pmv.nu
Pot: Potentiometer setting, see section 5. Also see video on www.pmv.nu

Full reset: Resets all set values and enters Factory mode. To reset the values only, use FACT SET in main menu, see below.

FULL MENU FACT SET

The menu contents are shown in the chart below.
The default values that were set on delivery can be reset using the Fact Set menu. Values from calibration and from other settings will then be lost.

The menu contents are shown in the figures on the right and the texts are described below:

BASIC MENU

 READCurrent values can be read using the Read Menu and some values can be reset.

Pos	Shows current position
Set\&pos	Set point and position
Set\&dev	Set point and deviation
Pos graph	Shows position graph
Temp	Shows current temperature

Statistics n cycles

Acc travel \quad Travel $=$ [accumulated \% valve has moved/100].

Example: move 60\% up + move 40% down $=>$ Acc travel $=1$
mean dev
$\begin{array}{ll}\text { m.abs dev } & \begin{array}{l}\text { Shows accumulated } \\ \text { absolute deviation in \% }\end{array} \\ \text { \# of resets } & \text { Shows number of resets }\end{array}$
$\begin{array}{ll}\text { runtime } & \begin{array}{l}\text { Shows accumulated runtime } \\ \text { since last reset }\end{array}\end{array}$

Extr temp Shows extreme min and max temperature

Histogram Shows position and time for position value

Shows number of cycles. 1 cycle = [move of valve +change direction+move opposite direction] regardless of size of each move/stroke.
has moved/100].
Example: move 60% up + move
40% down $=>$ Acc travel $=1$

Shows accumulated deviation in \%
Histogram

Alarms Displays tripped alarms

The Man/Auto menu is used to change between manual and automatic modes.
The menu contents are shown in the figures on the right and the various texts are described below:
$A U T, O K=M A N$

\neg| AUT, OK=MAN
 $P O S=12,3 \%$ |
| :--- |$-O K-$| $\mathrm{MAN}, \mathrm{OK}=\mathrm{AUT}$ |
| :--- |
| $P O S=12,3 \%$ |

Positioner in automatic mode
MAN, OK = AUT
Positioner in manual mode

When changing between MAN and AUT mode, the $O K$ button must be pressed for 3 seconds.

In the MAN mode, the value of POS can be changed using $\Delta>$. The push-buttons increase/decrease the value in steps. The value can also be changed in the same way as for the other parameter values, as described on page 14

Other functions

C+ can be fully opened by pressing and then immediately $O K$ simultaneously.

C- can be fully opened by pressing ∇ and $O K$ simultaneously.

C+ and C- can be fully opened for blowing clean by pressing $\Delta \nabla$ and $O K$ simultaneously.

BASIC MENU
 SHIFT MENU

The Shift Menu is used to choose between the basic menu and the full menu.
The menu contents are shown in the figures on the right and the various texts are described below:

No
Full menu selected.
Yes
Basic menu selected.

The Menu can be locked with a passcode, see Setup menu.

Full Menu

FULL MENU STATUS

The Status Menu is used to select whether or not the positioner is in service.
The menu contents are shown in the figures on the right and the various texts are described below:
o o service
Not in service. Flashing indicator in upper lefthand corner of display.
in service
Positioner in service.
 Critical parameters cannot be changed.

> When changing between In service and Out of service, the OK button must be pressed for 3 seconds.

FULL MENU

 SETUP
The Setup Menu is used for various settings.

The menu contents are shown in the chart on the next page and the various texts are described below:

Actuator	Type of actuator	Size of actuator	Time out
Rotating	Rotating actuator.	Small	10 s
Linear	Linear actuator.	Medium	25 s
		Large	60 s
		Extra large	180 s

Lever
Only for linear actuator.
Lever stroke
Stroke length to achieve correct display. Input only needed in case display value is off
Level cal Calibration of positions to achieve correct display.

Direction

Direct Direct function (signal increase opens). Indicator/spindle rotates counter-clock wise.
Reverse
Reverse function.

Character
Curves that show position as a function of input signal.
Linear
Equal \%
Quick open
Sqr root
Custom

Cust chr
\# of point
Specify number of points
(3, 5, 9, 17, or 33)
Cust curve \quad Enter values on X and Y axes.

Curr range (Use this function to split range)
$0 \%=4.0 \mathrm{~mA}$
$100 \%=20.0 \mathrm{~mA}$ Possibility of selecting which input signal values will correspond to

0\% and 100\% movement respectively.

Examples of settings:

$$
4 \mathrm{~mA}=0 \%, 12 \mathrm{~mA}=100 \%, 12 \mathrm{~mA}=0 \%, 20 \mathrm{~mA}=100 \% .
$$

Start menu	Start in Basic menu or Full menu.
Orient	Orientation of text on display.
Par mode	Display of control parameters such as $\mathrm{P}, \mathrm{I}, \mathrm{D}$ or $\mathrm{K}, \mathrm{Ti}, \mathrm{Td}$.
Devicedata	
HW rew	
SW rew	General parameters.
Capability	
HART	Menu with HART parameters.
	Only amendable with HART
	communicator. It is possible to read from display.
Profibus PA	
Status	Indicates present status
Device ID	Serial number
Address	1-126
Tag	Allotted ID
Descriptor	ID description
Date	SW release date
Failsafe	Value = preset pos
	Time $=$ Set time $+10 \mathrm{sec}=$ time before movement
	Valve act = failsafe
	(preset pos) or last value (present pos)
	Alarm out $=0 \mathrm{n} / 0 \mathrm{ff}$
Foundation Fieldbus	
Device ID	Serial number
Nod address	Address on the bus provided by the DCS system
TAG-PD_TAG	Name provided by the
	DCS system
Descriptor	D20 positioner
Date	SW release date
Sim jumper	Simulate jumper, FF simulation functionality activated $=0 \mathrm{~N}$

The menu contents are shown in the chart on the next page and the various texts are described below:
Close time Minimum time from fully open to closed.
Open time Minimum time from closed to fully open.
Deadband Setting deadband. Min. 0.1\%.

Expert Advanced settings.
Control See explanations below.

Togglestep Test tool for checking functions. Overlays a square wave on the set value.

Self test Internal test of processor

Undo You can read last 20 changes.

P,I,D and K,Ti,Td parameters
If one of the gains is changed, the corresponding value in the other gain set is changed accordingly.

The menu contents are shown in the chart on the next page and the various texts are described below:
Deviation Alarm generated when deviation occurs
On/Off
Distance
Time
Alarm out
Valve act
Limit 1 Alarm above/below a certain level.
On/Off Alarm on/off.
Minipos \quad Setting of desired min. position.
Maxpos \quad Setting of desired max. position.
Hysteresis
Alarm on
Valve act
Limit 2 See Limit 1.

Temp	Alarm based on temperature
On/Off	Temperature alarm on/off.
Low temp	Temperature setting.
High temp	Temperature setting.
Hysteresis	Allowed hysteresis.
Alarm out	Select ON/OFF offers output on terminals.
Valve act	Behavior of valve when alarm is generated.

Valve act
No action Alarm generated only. Operations not affected.
Goto open Valve moves to 100\%. Positioner changes to position Manual.
Goto close Valve moves to 0\%. Positioner changes to position Manual.
Manual Valve stays in unchanged position. Positioner moves to position Manual.

Replacement for page $\mathbf{x x}$ in the D30 IOM for software version 1.2

9. Maintenance/service

When carrying out service, replacing a circuit board, etc., it may be necessary to remove and refit various parts of the positioner. This is described on the following pages.

Read the Safety Instructions on page 4 and 5 before starting work on the positioner.
Cleanliness is essential when working with the positioner. Contamination in the air ducts will inevitably lead to operational disturbances. Do not disassemble the unit more than that described here.

DO NOT disassemble the valve block apart because its function will be impaired.
When working with the D20 positioner, the work place must be equipped with ESD protection before the work is started.

Always turn off the air and electrical supplies before starting any work.

1
Please see section for special conditions for safe use and spare parts on page 5!
Please contact a Flowserve office for information regarding proper procedures. www.pmv.nu or infopmv@flowserve.com

Disassembling D20
Removing cover and inner cover

- Unscrew the screws A and remove the cover. When mounting cover - see page 5.
- Pull off the arrow pointer, B.
- Unscrew the screws C and remove the inner cover.
- If equipped with switches remove the cam stack

Note: Removing inner cover will void warranty.

Circuit boards (PCB)

Disconnect or switch off the electric power supply before starting any work.

- Lift off the display PCB..
- Release the cable connections.
- Unscrew the two screws B and lift up the circuit board.

Limit Switches

Loosen two x screws holding the plastic cover and remove the screws. Pull out the plastic cover. Break away the plastic protection located on the main plastic cover to ensure there is an opening for the switches/cams.

When installing the switch card, make sure it is placed correctly. Secure the PC Board with the two screws holding the plastic cover. Make sure the holes are centred before tightening the screws.

Note! When installing the cam assembly for mechanical switches, retract both switch arms first.

Install the cam assembly and tighten the screws loosely to obtain enough friction to lock the cams.

Adjust the lower cam first, then the upper cam.

Valve block

1
Turn off the air and electric power supply before starting any work.

- Remove the three screws A and lift out the valve block

Do not disassemble the valve block

- When installing the valve block - torque the two screws to $0,4 \mathrm{Nm}$ and seal with Loctite ${ }^{\oplus} 222$.

Pressure sensors (option)
Two pressure sensors are available as an option. They indicate pressure for supply and $\mathrm{C}+$ air, and can be used by ValveSight ${ }^{T M}$ to enable advanced valve diagnostics.

The sensors are mounted on a circuit board which mounts next to the air relay on the floor of the housing at B using three screws.

Pressure sensor PCB - top view

Pressure sensor PCB - bottom view

Potentiometer
$90^{\circ}\left(270^{\circ}\right)$ spring loaded potentiometer
The spring-loaded potentiometer can be removed from the gearwheel for calibration or replacement.

If the potentiometer is replaced or the setting is changed, it must be calibrated.

- Select the menu Calibrate - Expert - Cal pot. The display shows Set gear.
- Turn the spindle shaft clockwise to end position and press OK. Either turn manually or use the up/down arrows (with supply air) to stroke the positioner to turn the shaft clockwise.
- Move spring (1) aside and disengage cogwheels. Turn potentiometer according to display until OK is shown. Press OK. See drawing below.
- Move back spring (1) and secure potentiometer (2) calibration. See drawing below. Spring (1) must allow a small play but not so big that the cogs can disengage.

(1)

Potentiometer and cogwheel for 90° rotation

10. Trouble shooting

Symptom	Action
Input signal change to positioner does not affect actuator position.	- Check air supply pressure, air cleanliness, and connection between positioner and actuator. - Out of service, in manual mode. - Check input signal to positioner. - Check mounting and connections of positioner and actuator.
Change in input signal to positioner makes actuator move to its end position.	- Check input signal. - Check mounting and connections of positioner Inaccurate control.
and actuator.	

11. Technical data

Rotation angle	$\min 25^{\circ} \max 100^{\circ}$
Stroke	From 5 mm (0.2")
Input signal	4-20 mA DC
Air supply	1.4-6 barg (20-85 psi) DIN/ISO 8573-1 3.2.3 Free from oil, water and moisture.
Air delivery	7 Nm3/h @ 6 bar / 4.12 SCFM @ 87 psi
Air consumption	$0.120 \mathrm{Nm} 3 / \mathrm{h} @ 6$ bar / 0.071 SCFM @ 87 psi
Air connections	1/4" NPT
Cable entry	2x M20x1.5 or $1 / 2$ " NPT
Electrical connections	Screw terminals $2.5 \mathrm{~mm} 2 /$ AWG14
Linearity	<0.4\%
Repeatability	<0.5\%
Hysteresis	<0.3\%
Dead band	0.1-10\% adjustable
Display	Graphic, view area $15 \times 41 \mathrm{~mm}$ ($0.6 \times 1.6{ }^{\prime \prime}$)
UI	5 push buttons /single push button
CE directives	93/68EEC, 2014/30/EU, 92 /31/EEC
Voltage drop, w/o HART	8 V
Voltage drop, with HART	9.4 V
Enclosure	IP66
Material	Die-cast Aluminum
Surface treatment	Powder coating
Temperature range	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Weight	1.8 kg (4 lbs)
Mounting position	Any
Communication protocols	Hart, Profibus PA, Foundation Fieldbus

Mechanical switches	
Type	SPDT
Size	V3
Rating	3 A/250 VAC / 1A@30VDC
Temperature range	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
NAMUR sensors	
(NJ2-V3-N)	
Type	Proximity DIN EN 60947-5-6:2000
Load current	$1 \mathrm{~mA} \leq I \leq 3 \mathrm{~mA}$
Voltage range	8,2 VDC
Hysteresis	0.2\%
Temperature range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Proximity switches	
Type	SPDT
Rating	0.4 A @ 24 VDC , Max 10 W
Operating time	Max 1.0 ms
Max voltage	200 VDC
Contact resistance	0.2Ω
Temperature range	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
Slot NAMUR switches	
(SJ2-SN, SJ2-N)	
Type	Proximity DIN EN 60947-5-6:2000
Load current	$1 \mathrm{~mA} \leq 1 \leq 3 \mathrm{~mA}$
Voltage	8,2 VDC
Hysteresis	0.2\%
Temperature range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right) \mathrm{SJ2}-\mathrm{N}$ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $185^{\circ} \mathrm{F}$) SJ2-SN
4-20 mA transmitter	
Supply	11-28 VDC
Output	4-20 mA
Resolution	0.1\%
Linearity full span	+/-0.5\%
Output current limit	30 mA DC
Load impedance	800Ω @ 24 VDC

12. Dimensional Drawing

13. Spare parts

No	Part no	Description
1	D4-SP37PVA	Black cover incl. screws and flat indicator
1	D4-SP37FWA	White cover incl. screws and flat indicator
2	D4-SP40	Internal cover incl. screws
3	D4-SP1516	External covers SST, 2, incl screws
4	3-SXX	Spindle adaptor ($\mathrm{XX}=01,02,06,26,30,36 . .$.
5	D4-SP05-09	S09 shaft compl. incl. gear wheel, friction clutch, spring
5	D4-SP05-21	S21 shaft compl. incl. gear wheel, friction clutch, spring
5	D4-SP05-23	S23 shaft compl. incl. gear wheel, friction clutch, spring
5	D4-SP05-39	S39 shaft compl. incl. gear wheel, friction clutch, spring
6	D2-SP50 STD	Air relay complete, incl. cable, seal, screws
7	D4-SP08	Potentiometer compl. incl. spring, bracket, cable
8	3-SP37HR	PCB LCD, 5 buttons, assembly
8	AV-SP080	PCB LCD only, assembly
9	D4-SP80-3S	PCB mother board 4-20 mA / HART (For D22 version)
9	D4-SP80-1S	Single button PCB mother board 4-20 mA / HART
9	D4-SP80-PS	PCB mother board Profibus PA
9	D4-SP80-FS	PCB mother board Fieldbus
10	D4-SP84-2	D20 pressure sensor assembly complete (Optional)
11	D4-SPGB	Bag with screws, 0-rings, seals, pair of sintered brass silencers, cable gland
12	D4-SP940N2	Gauge block G, complete incl. screws, seals, 2 gauges / SST, Brass
13	D4-SP081 S	Limit switches Mechanical SPDT compl.
13	D4-SP081 N	Limit switches Namur V3 P\&F NJ2-V3-N compl.
13	D4-SP081 P	Limit switches Proximity SPDT compl.
13	D4-SP081 5	Limit switches Namur slotted P\&F SJ2-SN compl.
13	D4-SP081 6	Limit switches Namur slotted P\&F SJ2-N compl.

Note: Replacement of certified spare parts require proper qualification and knowledge of applicable standards.

14. Applied Standards

EN 61000-6-2	C1	$2005-09-26$
EN 61000-6-3 A2	$2007-02-26$	
EN 61000-6-4 A1	$2007-02-26$	
EN 60204-1 A1	$2007-05-21$	
IEC 61010-1	2010	
EN IEC 60079-0:2018		
EN 60079-11	$2012+$ A11:2013	
EN 60079-14	2012	
EN 60079-26	2014	
EN 60079-27	2015	
IEC 61158-2	2010	

15. Control Drawing

PMV Automation AB
Korta Gatan 9
SE-171 54 SOLNA
SWEDEN
Phone: +46 (0)8-555 10600
E-mail: infopmv@flowserve.com

PMV USA

1511 Jefferson St. East
Sulphur Springs, TX 75482
Phone: +1 2816719209
Fax: +1 2816719268
E-mail: pmvsales@flowserve.com
Flowserve Flow Control
Burrell Road, Haywards Heath
West Sussex RH16 1TL
Phone: +44(0)1444314400

Flowserve Flow Control Benelux

Rechtzaad 17
4703 RC Roosendaal
THE NETHERLANDS
Phone: +31 (0) 306771946
Fax: +27 (0) 306772471

Flowserve Flow Control GmbH
Rudolf-Plank Strasse 2
D-76275 Ettlingen
GERMANY
Phone: +49 (0) 72431030
Fax: +49 (0) 7243103222

Flowserve Corporation
No. 35, Baiyu Road
Suzhou Industrial Park
Suzhou 215021, Jiangsu Province, PRC
Phone: +86-512-6288-1688
Fax: +86-512-6288-8737

Flowserve (China)
585, Hanwei Plaza
7 Guanghau Road
Beijing, China 100004
Phone: +86 1065611900
Flowserve Pte Ltd
No. 12 Tuas Avenue 20
Singapore 638824
Phone: +65 68798900
Fax: +65 68624940

Flowserve do Brasil Ltda

Rua Tocantins, 128 - Bairro Nova Gerti
São Caetano do Sul,
São Paulo 09580-130 Brazil
Phone: +5511 42316300
Fax: +5511 4231 6329-423

