3400IQ Digital Positioner

FCD LGENIM3401-01-05/10
Installation
Operation
Maintenance

Contents

1 Terms Concerning Safety 4
2 General Information 4
3 Unpacking and Storage 5
3.1 Unpacking 5
3.2 Storage 5
3.3 Pre-installation Inspection 7
4 Logix 3400/Q Positioner Overview 7
4.1 Specifications 10
4.2 Positioner Operation 11
4.3 Detailed Sequence of Positioner Operations 12
5 Mounting and Installation 14
5.1 Mounting to Valtek Linear Mark One Valves 14
5.2 Mounting to Standard Valtek Rotary Valves (See Figure 4) 15
5.3 Optional Valtek Rotary Mounting Procedure (See Figure 5) 17
5.4 NAMUR Mounting Option 18
5.5 Tubing Positioner to Actuator 18
$6 \quad$ Wiring and Grounding Guidelines (See Figure 6) 19
6.1 FF Command Input Wiring 19
6.2 Grounding Screw 19
6.3 Segment Compliance Voltage (See Figure 7) 20
6.4 Cable Requirements 21
6.5 Intrinsically Safe Barriers 21
6.6 DD Support 21
7 Startup 22
7.1 Logix 3400/Q Local Interface Operation 22
7.2 Initial DIP Switch Settings 22
7.3 Description of Configuration DIP Switch Settings 23
7.4 Description of Cal DIP Switch Settings 26
7.5 RE-CAL Operation 26
7.6 Manual Jog Calibration Operation 27
7.7 Local Control of Valve Position 27
7.8 Factory Reset 27
7.9 Logix 3400/Q Status Condition 27
7.10 Version Number Checking 30
7.11375 Handheld Communicator 31
7.12 Device Description (DD) Files 31
7.13 Calibration 31
2 7.13.1 CALIBRATE_FLAGS 31
7.13.2 Control and Tuning 32
7.14 Alerts 35
7.14.1 FINAL_VALUE_CUTOFF 35
7.14.2 Effects of FINAL_VALUE_CUTOFF on Operation 35
7.14.3 Soft Limits 35
7.14.4 Travel Accumulator 35
7.14.5 Cycle Counter 36
7.14.6 Position Deviation 36
7.14.7 Advanced Features 36
7.14.8 Standard vs. Advanced Diagnostics 36
7.14.9 Temperature and Pressure Units 36
7.14.10 Stroke Length 37
7.15 Characterization Retention 38
7.15.1 Initiating a Valve Signature 38
7.15.2 System Preparation 38
7.15.3 Signature Procedure 38
7.16 Step Signature 39
7.16.1 Collection of Stored Signature 39
7.17 Glossary 39
7.18 Transducer Block Parameters 41
8 Maintenance and Repair 50
8.1 Driver Module Assembly 50
8.2 Regulator 54
8.3 Checking or Setting Internal Regulator Pressure 55
8.4 Spool Valve 57
8.5 Spool Valve Cover 58
8.6 Stem Position Sensor 59
8.7 Main PCB Assembly 60
8.8 Pressure Sensor Board 61
8.9 User Interface Board 63
9 Optional Vented Design 64
10 Parts List 67
11 Logix 3400/Q Spare Parts Kits (See Figure 22 for item numbers) 68
12 Logix 3400/Q Mounting Kits 70
12.1 Valtek Mounting Kits 70
12.2 Logix O.E.M. Mounting Kits 71
12.3 NAMUR Accessory Mounting Kit Part Numbers 73
13 Frequently Asked Questions 74
14 How to Order 75 3
15 Troubleshooting 76

1 Terms Concerning Safety

The safety terms DANGER, WARNING, CAUTION and NOTE are used in these instructions to highlight particular dangers and/or to provide additional information on aspects that may not be readily apparent.
b DANGER: Indicates that death, severe personal injury and/or substantial property damage will occur if proper precautions are not taken.

C WARNING: Indicates that death, severe personal injury and/or substantial property damage can occur if proper precautions are not taken.
a CAUTION: Indicates that minor personal injury and/or property damage can occur if proper precautions are not taken.

NOTE: indicates and provides additional technical information, which may not be very obvious even to qualified personnel. Compliance with other, not particularly emphasized notes, with regard to transport, assembly, operation and maintenance and with regard to technical documentation (e.g., in the operating instruction, product documentation or on the product itself) is essential, in order to avoid faults, which in themselves might directly or indirectly cause severe personal injury or property damage.

2 General Information

The following instructions are designed to assist in unpacking, installing and performing maintenance as required on Flowserve Valtek Logix ${ }^{\otimes} 34001$ digital positioners. Series 3000 is the term used for all the positioners herein; however, specific numbers indicate features specific to model (i.e., Logix 3400 indicates that the positioner has Foundation Fieldbus protocol). See Logix 340010 Model Number table in this manual for a breakdown of specific model numbers. Product users and maintenance personnel should thoroughly review this bulletin prior to installing, operating, or performing any maintenance on the valve.

Separate Valtek Flow Control Products Installation, Operation, Maintenance instructions cover the valve (such as IOM 1 or IOM 27) and actuator (such as IOM 2 or IOM 31) portions of the system and other accessories. Refer to the appropriate instructions when this information is needed.

To avoid possible injury to personnel or damage to valve parts, WARNING and CAUTION notes must be strictly followed. Modifying this product, substituting non-factory parts or using maintenance procedures other than outlined could drastically affect performance and be hazardous to personnel and equipment, and may void existing warranties.

C WARNING: Standard industry safety practices must be adhered to when working on this or any process control product. Specifically, personal protective and lifting devices must be used as warranted.

3 Unpacking and Storage

3.1 Unpacking

1. While unpacking the Logix 340010 positioner, check the packing list against the materials received. Lists describing the system and accessories are included in each shipping container.
2. When lifting the system from the shipping container, position lifting straps to avoid damage to mounted accessories. Systems with valves up to six inches may be lifted by actuator lifting ring. On larger systems, lift unit using lifting straps or hooks through the yoke legs and outer end of body.

C WARNING: When lifting a valve/actuator assembly with lifting straps, be aware the center of gravity may be above the lifting point. Therefore, support must be given to prevent the valve/actuator from rotating. Failure to do so can cause serious injury to personnel or damage to nearby equipment.
3. In the event of shipping damage, contact the shipper immediately.
4. Should any problems arise, contact a Flowserve Flow Control representative.

3.2 Storage

Control valve packages (a control valve and its instrumentation) can be safely stored in an enclosed building that affords environmental protection; heating is not required. Control valve packages must be stored on suitable skids, not directly on the floor. The storage location must also be free from flooding, dust, dirt, etc.

Long Term Storage of Logix $\mathbf{3 0 0 0}$ series Positioners in Humid Locations

The Logix 3000 series positioners are designed to operate in humid environments when connected to a proper instrument air supply. There are some occasions when valves and positioners are stored at job sites or installed and commissioned and then left without instrument air for months. To make startup easier for units that are left without instrument air and insure that the positioners will be ready to operate, it is recommended that the vent assembly of the positioner be sealed preferably with a desiccant pouch sealed with the vent assembly.

The vent assembly is located in the upper left side of the positioner. The gaps around the assembly as noted by the arrows should be sealed for long term storage.

A small desiccant package as shown can be included under the sealing tape to insure proper protection.

All of the edges around the vend assembly should be sealed similar to the picture below.

The sealing tape and desiccant should be removed when instrument air is permanently applied to the positioner.

3.3 Pre-installation Inspection

If a valve control package has been stored for more than one year, inspect one actuator by disassembling it per the appropriate Installation, Operation, and Maintenance Instructions (IOM) prior to valve installation. If 0 -rings are out-of-round, deteriorated, or both, they must be replaced and the actuator rebuilt. All actuators must then be disassembled and inspected. If the actuator 0 -rings are replaced, complete the following steps:

1. Replace the pressure-balance plug 0 -rings.
2. Inspect the solenoid and positioner soft goods and replace as necessary.

4 Logix 3400IQ Positioner Overview

The Logix 34001 digital positioner is a two-wire Foundation Fieldbus compliant digital valve positioner. The positioner is configurable through the local user interface. The Logix 3400IQ utilizes the FF protocol to allow two-way remote communications with the positioner. The Logix 34001 Q positioner can control both double- and single-acting actuators with linear or rotary mountings. The positioner is completely powered by the FF signal. Start up voltage must be from a FF power supply source.

Figure 1: Logix 34001 Q Digital Positioner Schematic (air-to-open configuration)

Figure 2: System Positioning Algorithm

4.1 Specifications

Table I: Electrical Specifications

Power Supply	Two-wire, 9-32 VDC FF compatible			
IS	Fisco compliant			
Communications	FF Protocol ITK 4.6x			
Operating Current	23 mA			
Maximum Voltage	36.0 VDC			
Table II: Environmental Conditions				
Operating Temperature Range		Standard	-40° to $176^{\circ} \mathrm{F}$	
		(-40° to $80^{\circ} \mathrm{C}$)		
Transport and Storage Temperature Range			-40° to $176^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.80^{\circ} \mathrm{C}\right)$	
Operating Humidity		0-100\% non-condensing		

Note: The air supply must conform to ISA Standard ISA 7.0.01 (a dew point at least 18 degrees Fahrenheit below ambient temperature, particle size below five microns-one micron recommended -and oil content not to exceed one part per million).

Table III: Physical Specifications

Housing Material	Cast, powder-painted aluminum, stainless steel
Soft Goods	Buna-N / Florosilicone
Weight	8.3 pounds $(3.9 \mathrm{~kg})$ aluminum
	20.5 pounds $(9.3 \mathrm{~kg})$ stainless steel

Table IV: Positioner Specifications

Deadband	$<0.1 \%$ full scale
Repeatability	$<0.05 \%$ full scale
Linearity	$<0.5 \%$ (rotary), $<0.8 \%$, (sliding stem) full scale
Air Consumption	<0.3 SCFM $\left(0.5 \mathrm{Nm}^{3} / \mathrm{hr}\right) @ 60 \mathrm{psi}(4 \mathrm{bar})$
Air Supply	$30-150 \mathrm{psig}$ (ISA 7.0 .0 .1 compliant)

Table V: Hazardous Area Certifications

Intrinsically Safe
(FM) ${ }^{-1}$
Class I,IIIII, Div 1, Grp A,B,C,D,E,F,G
$\mathrm{T} 4 \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Class 1 , Zone 0 , AEx ia IIC
NEMAType 4X
Entitiy Parameters:
$\mathrm{Ui}=24 \mathrm{~V}, \mathrm{I}=250 \mathrm{~mA}, \mathrm{Pi}=1.2 \mathrm{~W}, \quad \mathrm{Ci}=3300 \mathrm{pF}$, Li=10uH
Fisco Parameters:
$\mathrm{Ui}=17.5 \mathrm{~V}, \mathrm{li}=380 \mathrm{~mA}, \mathrm{Pi}=5.32 \mathrm{~W}, \mathrm{Ci}=3300 \mathrm{pF}$, $\mathrm{Li}=10 \mathrm{uH}$

Explosion Proof
Class I, Div. 1, Grp B,C,D
DIP Class II,III, Div. 1, Grp E,F,G
T6 Ta= $60^{\circ} \mathrm{C}$
NEMA/ Type 4X
(1)

Class I, Div 1, Grp B,C,D
Class II, Grp E,F,G
Class III
ExdIIB +H 2

II 1 G , Ex ia IIC T4 $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ FM07ATEX0029X	<FM. Ex> \\| $2 \mathrm{G}, \mathrm{Exd} \mathrm{\\| B} \\| \mathrm{H} 2 \mathrm{~T} 5 \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ II 2 D, ExtD A21 T95 ${ }^{\circ} \mathrm{C}$
Entity Parmeters	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Ui=24V, Li=250mA, Pi=1.2W, Ci=3300pF, Li=10uH	IP65
Fisco Parameters:	FM07ATEX0005
Ui=17.5V, Li=380mA, Pi=5.32W, Ci=3300pF, Li=10uH	
IP 65	
IECEx	
Ex ia IIC T4 Ga	
$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
Entity Parmeters: Ui=24V, li=250mA, Pi=1.2W, Ci=330	OpF, Li=10uH
Fisco Parameters: Ui=17.5V, li=380mA, Pi=5.32W, Ci=	$3300 \mathrm{pF}, \mathrm{Li}=10 \mathrm{uH}$
IP 65	
\\| 3 G , Ex nA nL IIC T6 Ta=-20 ${ }^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	
IP65 FM07ATEX0035X	
CE Compliant	
FISCO Compliant	
Special Conditions for Safe Use	

1. WARNING - Potential Sparking Hazard! When used within a Zone 0 location, cast aluminum (when Enclosure Option $b=0,2,3,4$, or 5) enclosures shall be installed in such a manner as to prevent the possibility of sparks resulting from friction or impact against the enclosure.
2. WARNING - Potential Electrostatic Charging Hazard! To prevent the risk of electrostatic sparking, the equipment's mechanical pressure gauges shall be cleaned only with a damp cloth.
3. Using the box provided on the nameplate, the user shall permanently mark the protection type chosen for the specific installation. Once the type of protection has been marked it shall not be changed.

4.2 Positioner Operation

The Logix 3400 IQ positioner is an electric feedback instrument. Figure 1 shows a Logix 3400IQ positioner installed on a double-acting linear actuator for air-to-open action.

The Logix 3400IQ receives power from the two-wire, FF input signal. This positioner utilizes FF communications for the command signal. The command source can be accessed with the Rosemount 375 communicator or other host software.
0% is always defined as the valve closed position and 100% is always defined as the valve open position. During stroke calibration, the signals corresponding to 0% and 100% are defined.

The input signal in percent passes through a characterization/limits modifier block. The positioner no longer uses CAMs or other mechanical means to characterize the output of the positioner. This function is done in software, which allows for in-the-field customer adjustment. The positioner has four basic modes: Linear, Equal Percent (=\%), Quick Open (QO) and Custom characterization. In Linear mode, the input signal is passed straight through to the control algorithm in a $1: 1$ transfer. In Equal Percent $(=\%)$ mode, the input signal is mapped to a standard $30: 1$ rangeability $=\%$ curve. In

Quick Open the input signal is mapped to an industry standard quick-open curve. If Custom characterization is enabled, the input signal is mapped to either a default =\% output curve or a custom, user-defined 21-point output curve. The custom user-defined 21-point output curve is defined using a handheld or the Host configuration tool software. In addition, two user-defined features, Soft Limits and Final Value Cutoff, may affect the final input signal. The actual command being used to position the stem, after any characterization or user limits have been evaluated, is called the Control Command.

The Logix $34001 Q$ uses a two-stage, stem-positioning algorithm. The two stages consist of an inner-loop, spool control and an outer-loop, stem position control. Referring again to Figure 1, a stem position sensor provides a measurement of the stem movement. The Control Command is compared against the Stem Position. If any deviation exists, the control algorithm sends a signal to the inner-loop control to move the spool up or down, depending upon the deviation. The inner-loop then quickly adjusts the spool position. The actuator pressures change and the stem begins to move. The stem movement reduces the deviation between Control Command and Stem Position. This process continues until the deviation goes to zero.

The inner-loop controls the position of the spool valve by means of a driver module. The driver module consists of a temperature-compensated hall effect sensor and a piezo valve pressure modulator. The piezo valve pressure modulator controls the air pressure under a diaphragm by means of a piezo beam bender. The piezo beam deflects in response to an applied voltage from the inner-loop electronics. As the voltage to the piezo valve increases, the piezo beam bends, closing off against a nozzle causing the pressure under the diaphragm to increase. As the pressure under the diaphragm increases or decreases, the spool valve moves up or down respectively. The hall effect sensor transmits the position of the spool back to the inner-loop electronics for control purposes.

4.3 Detailed Sequence of Positioner Operations

A more detailed example explains the control function. Assume the unit is configured as follows:

- Unit is in OOS.
- Custom characterization is disabled (therefore characterization is Linear).
- No soft limits enabled. No Final Value Cutoff set.
- Valve has zero deviation with a present input command of 50.
- Write to Final_Value to change command.
- Actuator is tubed and positioner is configured air-to-open.

Given these conditions, 50 represents a Command source of 50 percent. Custom characterization is disabled so the Command source is passed 1:1 to the Control Command. Since zero deviation exists, the Stem Position is also at 50 percent. With the stem at the desired position, the spool valve will be at a middle position that balances the pressures above and below the piston in the actuator. This is commonly called the null or balanced spool position.

Assume the input signal changes from 50 to 75 . The positioner sees this as a Command source of 75 percent. With Linear characterization, the Control Command becomes 75 percent. Deviation
is the difference between Control Command and Stem Position: Deviation $=75 \%-50 \%=+25 \%$, where 50 percent is the present stem position. With this positive deviation, the control algorithm sends a signal to move the spool up from its present position. As the spool moves up, the supply air is applied to the bottom of the actuator and air is exhausted from the top of the actuator. This new pressure differential causes the stem to start moving towards the desired position of 75 percent. As the stem moves, the Deviation begins to decrease. The control algorithm begins to reduce the spool opening. This process continues until the Deviation goes to zero. At this point, the spool will be back in its null or balanced position. Stem movement will stop and the desired stem position is now achieved.

One important parameter has not been discussed to this point: Inner loop offset. Referring to Figure 2, a number called Inner loop offset is added to the output of the control algorithm. In order for the spool to remain in its null or balanced position, the control algorithm must output a non-zero spool command. This is the purpose of the Inner loop offset. The value of this number is equivalent to the signal that must be sent to the spool position control to bring it to a null position with zero deviation. This parameter is important for proper control and is optimized and set automatically during stroke calibration.

Figure 3: Linear Mark One Control Valve Mounting

5 Mounting and Installation

5.1 Mounting to Valtek Linear Mark One Valves

To mount a Logix 3400IQ positioner to a Valtek linear Mark One valve, refer to Figure 3 and proceed as outlined below. The following tools are required:

- $9 / 16^{\prime \prime}$ open-end wrench (or $1 / 2$ " for spud sizes 2.88 and smaller)
- 7/16" box wrench
- $3 / 8$ " open-end wrench

1. Remove washer and nut from follower pin assembly. Insert pin into the appropriate hole in follower arm, based on stroke length. The stroke lengths are stamped next to their corresponding holes in the follower arms. Make sure the unthreaded end of the pin is on the stamped side of the arm. Reinstall lock washer and tighten nut to complete follower arm assembly.
2. Slide the double-D slot in the follower arm assembly over the flats on the position feedback shaft in the back of the positioner. Make sure the arm is pointing toward the customer interface side of the positioner. Slide lock washer over the threads on the shaft and tighten down the nut.
3. Align the bracket with the three outer mounting holes on the positioner. Fasten with $1 / 4$ " bolts.
4. Screw one mounting bolt into the hole on the yoke mounting pad nearest the cylinder. Stop when the bolt is approximately $3 / 16^{\prime \prime}$ from being flush with mounting pad.
5. Slip the large end of the teardrop shaped mounting hole in the back of the positioner/bracket assembly over the mounting bolt. Slide the small end of the teardrop under the mounting bolt and align the lower mounting hole.
6. Insert the lower mounting bolt and tighten the bolting.
7. Position the take-off arm mounting slot against the stem clamp mounting pad. Apply Loctite 222 to the take-off arm bolting and insert through washers into stem clamp. Leave bolts loose.
8. Slide the appropriate pin slot of the take-off arm, based on stroke length, over the follower arm pin. The appropriate stroke lengths are stamped by each pin slot.
9. Center the take-off arm on the rolling sleeve of the follower pin.
10. Align the take-off arm with the top plane of the stem clamp and tighten bolting. Torque to 120 in-lb.

NOTE: If mounted properly, the follower arm should be horizontal when the valve is at 50% stroke and should move approximately $\pm 30^{\circ}$ from horizontal over the full stroke of the valve. If mounted incorrectly, a stroke calibration error will occur and the indicator lights will blink a YRYR or YRRY code indicating the position sensor has gone out of range on one end of travel. Reposition the feedback linkage or rotate the position sensor to correct the error.

5.2 Mounting to Standard Valtek Rotary Valves (See Figure 4)

Figure 4: Standard Rotary Mounting

The standard rotary mounting applies to Valtek valve/actuator assemblies that do not have mounted volume tanks or handwheels. The standard mounting uses a linkage directly coupled to the valve shaft. This linkage has been designed to allow for minimal misalignment between the positioner and the actuator. The tools required for the following procedure are:

- $5 / 32^{\prime \prime}$ Allen wrench
- $1 / 2$ " open-end wrench
- 7/16" open-end wrench
- $3 / 8$ " socket with extension
- 3/16" nutdriver

1. Fasten the spline lever adapter to the splined lever using two $6 \times 1 / 2$ " self-tapping screws.
2. Slide the take-off arm assembly onto the spline lever adapter shaft. Insert the screw with star washer through the take-off arm and add the second star washer and nut. Tighten nut with socket so arm is lightly snug on the shaft but still able to rotate. This will be tightened after linkage is correctly oriented.
3. Attach follower arm to positioner feedback shaft using the star washer and 10-32 nut.

NOTE: The arm will point up when feedback shaft is in the free position.
4. Using four $1 / 4-20 \times 1 / 2$ " bolts, fasten positioner to universal bracket using appropriate hole pattern (stamped on bracket).
5. Using a $1 / 2$ " end wrench and two $5 / 16-18 \times 1 / 2$ " bolts, attach bracket to actuator transfer case pad. Leave these bolts slightly loose until final adjustments are made.
6. Rotate take-off arm so the follower pin will slide into the slot on the take-off arm. Adjust the bracket position as needed noting the engagement of the follower pin and the take-off arm slot. The pin should extend approximately $1 / 16$ " past the take-off arm. When properly adjusted, securely tighten the bracketing bolts.

Orienting the Take-off Arm for Final Lock Down

1. Tube the Logix 3400IQ positioner to the actuator according to the instructions given in Section 5.5, "Tubing Positioner to Actuator."
2. With supply pressure off, rotate the follower arm in the same direction the shaft would rotate upon a loss of supply pressure. When the mechanical stop of the follower arm (positioner) is reached, rotate back approximately 15 degrees.
3. Hold the take-off arm in place; tighten the screw of the take-off arm.

NOTE: The take-off arm should be snug enough to hold the follower arm in place but allow movement when pushed.
4. Connect regulated air supply to appropriate port in manifold.
5. Remove main cover and locate DIP switches and RE-CAL button.
6. Refer to sticker on main board cover and set DIP switches accordingly. (A more detailed explanation of the DIP switch settings is given in Section 7, "Startup.")
7. Press the RE-CAL button for three to four seconds or until the positioner begins to move. The positioner will now perform a stroke calibration.
8. If the calibration was successful the green LED will blink GGGG or GGGY and the valve will be in control mode. Continue with step 9. If calibration failed, as indicated by a YRYR or YRRY blink code, the A/D feedback values were exceeded and the arm must be adjusted away from the positioners limits. Return to step 2 and rotate the arm back approximately 10 degrees.

NOTE: Remember to remove the air supply before re-adjusting take-off arm.
9. Tighten the nut on the take-off arm. The socket head screw of the take-off arm must be tight, about $40 \mathrm{in}-\mathrm{lb}$. NOTE: If the take-off arm slips, the positioner must be recalibrated.

C WARNING: Failure to follow this procedure will result in positioner and/or linkage damage. Check air-action and stroke carefully before lockdown of take-off arm to spline lever adapter.

5.3 Optional Valtek Rotary Mounting Procedure (See Figure 5)

Figure 5: Optional Rotary Mounting

The optional rotary mounting applies to Valtek valve/actuator assemblies that are equipped with mounted volume tanks or handwheels. The optional mounting uses a four-bar linkage coupled to the valve shaft. The following tools are required:

- $3 / 8$ " open-end wrench
- 7/18" open-end wrench
- $1 / 2$ " open-end wrench

1. Using a $1 / 22^{\prime \prime}$ open-end wrench and two $5 / 16-18 \times 1 / 2$ bolts, attach bracket to actuator transfer case pads. Leave bracket loose to allow for adjustment.
2. Using four $1 / 4-20 \times 1 / 2$ " bolts and a ${ }^{7 / 16 " ~}$ open-end wrench, fasten positioner to universal bracket, using the four-hole pattern that locates the positioner the farthest from the valve. Rotate positioner 90 degrees from normal so gauges are facing upward.
3. Attach follower arm to positioner feedback shaft, using the star washer and 10-32 nut.
4. Attach tripper and tripper clamp to valve shaft using two $1 / 4-20$ bolts and two $1 / 4-20$ locknuts. Leave tripper loose on shaft until final adjustment.
5. Thread ball joint linkage end to tripper and tighten (thread locking compound such as Loctite is recommended to prevent back threading). Adjust the length of tie rod so follower arm and tripper rotate parallel to each other (the rod must be cut to the desired length). Connect the other ball joint end to follower arm using a star washer and a 10-32 nut.
6. Tighten bracket and tripper bolting.
7. Check for proper operation, note direction of rotation.

C WARNING: If rotating in wrong direction, serious damage will occur to the positioner and/or linkage. Check air action and stroke direction carefully before initiating operation.

5.4 NAMUR Mounting Option

Logix 3200IQ is available with a NAMUR output shaft and mounts on an actuator using the ISO F05 holes. Proper alignment of the positioner shaft to the actuator shaft is very important since improper alignment can cause excess wear and friction to the positioner.

5.5 Tubing Positioner to Actuator

The Logix 3400IQ digital positioner is insensitive to supply pressure changes and can handle supply pressures from 30 to 150 psig . A supply regulator is recommended if the customer will be using the diagnostic features of the Logix 3400IQ but is not required. In applications where the supply pressure is higher than the maximum actuator pressure rating a supply regulator is required to lower the pressure to the actuator's maximum rating (not to be confused with operating range). An air filter is highly recommended for all applications where dirty air is a possibility.

NOTE: The air supply must conform to ISA Standard ISA 7.0.01 (a dew point at least $18^{\circ} \mathrm{F}$ below ambient temperature, particle size below five microns-one micron recommended-and oil content not to exceed one part per million).

Air-to-open and air-to-close are determined by the actuator tubing, not the software. When air action selection is made during configuration, that selection tells the control which way the actuator has been tubed. The top output port is called Output 1. It should be tubed to the side of the actuator that must receive air to begin the correct action on increasing signal. Verify that tubing is correct prior to a stroke calibration. Proper tubing orientation is critical for the positioner to function correctly and have the proper failure mode. Refer to Figure 1 and follow the instructions below:

Linear Double-acting Actuators

For a linear air-to-open actuator, the Output 1 port of the positioner manifold is tubed to the bottom side of the actuator. The Output 2 port of the positioner manifold is tubed to the top side of the actuator. For a linear air-to-close actuator the above configuration is reversed.

Rotary Double-acting Actuators

For a rotary actuator, the Output 1 port of the positioner manifold is tubed to the bottom side of the actuator. The Output 2 port of the positioner manifold is tubed to the top side of the actuator. This tubing convention is followed regardless of air action. On rotary actuators, the transfer case orientation determines the air action.

Single-acting Actuators

For single-acting actuators, the Output 1 port is always tubed to the pneumatic side of the actuator regardless of air action. The Output 2 port must be plugged.

$6 \quad$ Wiring and Grounding Guidelines (see figure 6)

C WARNING: This product has electrical conduit connections in either thread sizes $1 / 2^{\prime \prime}$ NPT or M20 which appear identical but are not interchangeable. Housings with M20 threads are stamped with the letters M20 above the conduit opening. Forcing dissimilar threads together will damage equipment, cause personal injury and void hazardous location certifications. Conduit fittings must match equipment housing threads before installation. If threads do not match, obtain suitable adapters or contact a Flowserve representative.

6.1 FF Command Input Wiring

The Logix 34001 Q is non-polarity sensitive. Wire FF source to the input terminals (see Figure 6). Minimum operating voltage is 9 VDC.

The FF signal to the Logix 3400 IQ digital positioner should be in shielded cable. Shields must be tied to a ground at only one end of the cable to provide a place for environmental electrical noise to be removed from the cable. In general, shield wire should be connected at the source. Refer to guidelines in FF AG-181 for proper wiring methods.

NOTE: The Logix 3400IQ positioner carries an intrinsically safe barrier rating of 250 mA . Input currents should not exceed $250 \mathrm{~mA}, 5$ watts.

6.2 Grounding Screw

The green grounding screw, located inside the termination cap, should be used to provide the unit with an adequate and reliable earth ground reference. This ground should be tied to the same ground as the electrical conduit. Additionally, the electrical conduit should be earth grounded at both ends of its run.

Figure 6: Field Termination

C WARNING: The green grounding screw must not be used to terminate signal shield wires.

6.3 Segment Compliance Voltage (See Figure 7)

Output compliance voltage refers to the voltage limit that can be provided by the FF source. A FF system consists of the FF source, wiring resistance, barrier resistance (if present), and the Logix 3400IQ positioner voltage. The Logix 34001Q digital positioner requires that the system allows for a 9.0 VDC drop across the positioner at minimum segment voltage. The actual voltage at the terminals varies from 9.0 to 32.0 VDC depending on the FF signal and ambient temperature.

Determine if the segment will support the Logix 340012 digital positioner by performing the following calculation.

```
Voltage = Compliance Voltage (@ 23 mA) -
```

 \(23 \mathrm{~mA} \cdot\left(\mathrm{R}_{\text {barier }}+\mathrm{R}_{\text {wire }}\right)\)
 The calculated voltage must be greater than 9 VDC in order to safely support the Logix 34001 Q digital positioner.

Example:
DCS Compliance Voltage $=19$ VDC
$R_{\text {barier }}=300 \Omega$
$R_{\text {wire }}=25 \Omega$
Current $_{\text {max }}=23 \mathrm{~mA}$
Voltage $=19 \mathrm{VDC}-0.023 \mathrm{~A} \cdot(300 \Omega+25 \Omega)=11.5 \mathrm{VDC}$
The voltage 11.5 VDC is greater than the required 9.0 VDC ; therefore, this system will support the Logix 3400IQ digital positioner.

Figure 7: Compliance Voltage

6.4 Cable Requirements

The Logix 34001 Q digital positioner utilizes the FF protocol. This communication signal is superimposed on the supply voltage.

FF rated cable should be used. Refer to H 1 wiring specification.

6.5 Intrinsically Safe Barriers

When selecting an intrinsically safe barrier, make sure the barrier is FF compatible. Although the barrier will pass the segment voltage and allow normal positioner operation, if not compatible, it may prevent FF communication.

6.6 DD Support

The DD for the Logix 3400 IQ can be downloaded from either the flowserve website: www.flowserve. com or the Foundation Fieldbus website: www.Fieldbus.org.

7 Startup

Figure 8: Local User Interface

7.1 Logix 3400IQ Local Interface Operation

The Logix 3400IQ local user interface (Figure 8) allows the user to configure the basic operation of the positioner, tune the response, and calibrate the positioner without additional tools or configurators. The local interface consists of a RE-CAL button for automatic zero and span setting, along with two jog buttons ($\mathbf{\Delta}$ and $\mathbf{\nabla}$) for spanning valve/actuators with no fixed internal stop in the open position. There is also a DIP switch block containing eight switches. Six of the switches are for basic configuration settings and two are for FF options. There is also a rotary selector switch for adjusting the positioner gain settings. For indication of the operational status or alarm conditions there are three LEDs on the local user interface.

7.2 Initial DIP Switch Settings

Before placing the unit in service, set the DIP switches in the Configuration boxes to the desired control options. A detailed description of each DIP switch setting follows.

NOTE: The Logix 3400IQ positioner reads the DIP switch settings each time the RE-CAL button is pressed. If a FF handheld or Host software is used to configure and then calibrate the positioner, the DIP switches are not read. The auto-tune adjustment switch labeled "GAIN" is always live and can be adjusted at any time.

22 Transducer block settings will always override the DIP switch settings until the RE-CAL button is pressed.

7.3 Description of Configuration DIP Switch Settings

The first six DIP switches are for basic configuration. The function of each switch is described below.

Air Action

This must be set to match the configuration of the valve/actuator mechanical tubing connection and spring location since these determine the air action of the system.

ATO (air-to-open)

Selecting ATO if increasing output pressure from the positioner is tubed so it will cause the valve to open.

ATC (air-to-close)

Selecting ATC if increasing output pressure from the positioner is tubed so it will cause the valve to close.

Pos. Characterization

Linear Select Linear if the actuator position should be directly proportional to the input signal.
Other Select Other if another characteristic is desired, which is set in conjunction with the Control_ Flags parameter in the transducer block.

Optional Pos. Characterization

If the Pos. Characterization switch is set to Other then this parameter is active with the following options:
=\% The =\% option will characterize the actuator response to the input signal based on a standard 30:1 equal percent rangeability curve.

QO Quick open is based on a standard industry quick-open curve.
Custom If Custom is selected, the positioner will be characterized to a custom table that must be set-up using a properly configured 375 handheld or other host software. Custom characterization can be thought of as a "soft CAM." The user can define a characterization curve using 21 points. The control will linearly interpolate between points. Points do not have to be equally spaced in order to allow more definition at critical curve areas. The default values will linearize the output of a valve with an inherent $=\%$ characteristic (e.g. ball valves.)

Figure 9: Default Custom Characterization

Table VI : Characteristic Curve Data

\% Command	\% Control Command			
	=\%	Linear	Custom	Q0
5	0	0	0	0
10	0.62	5	8.66	18.8
15	1.35	10	16.24	37.6
20	2.22	15	23.17	56.4
25	3.25	20	30.11	74.0
30	4.47	25	35.31	84.3
35	5.91	30	40.51	90.0
40	7.63	35	45.42	92.0
45	9.66	40	50.34	93.4
50	12.07	45	54.40	94.2
55	14.92	50	58.47	94.8
60	22.31	55	62.39	95.5
65	27.08	60	66.31	96.0
70	32.71	65	70.27	96.5
75	39.40	70	74.23	97.0
80	47.32	75	78.17	97.5
85	56.71	80	82.11	98.0
90	67.84	95	85.50	98.5
95	81.03	90	88.89	99.0
100	100.00	100	100.00	100.0

Auto Tune

This switch controls whether the positioner will auto tune itself every time the RE-CAL button is pressed or use preset tuning parameters.

On On enables an auto tune feature that will automatically determine the positioner gain settings based on the current position of the adjustable GAIN switch setting and response parameters measured during the last RE-CAL. The GAIN switch is live, meaning the settings can be adjusted at any time by changing the rotary switch position. (Note that there is a small black arrow indicating the selection. The slot in the switch is NOT the indicator.)

Figure 10: Adjustable GAIN Switch

If the adjustable GAIN selector switch is set to " E " with the auto tune switch on, a Flowserve standard response tuning set will be calculated and used based on response parameters measured during the last RE-CAL.

If the adjustable GAIN selector switch is set to " D ", " C ", " B ", or "A" with the auto tune switch on, progressively lower gain settings will be used based on response parameters measured during the last RE-CAL.

If the adjustable GAIN selector switch is set to " F ", " G ", or " H " with the auto tune switch on, progressively higher gain settings will be calculated and used based on response parameters measured during the last RE-CAL.

Off Off forces the positioner to use one of the factory preset tuning sets determined by the adjustable GAIN selector switch. Settings " A " through " H " are progressively higher gain predefined tuning sets. The GAIN selector switch is live and can be adjusted at any time to modify the tuning parameters.

NOTE: "E" is the default adjustable GAIN selector switch setting for all actuator sizes. Raising or lowering the gain setting is a function of the positioner/valve response to the control signal, and is not actuator size dependent.

Stability Switch

This switch adjusts the position control algorithm of the positioner for use with low-friction control valves or high-friction automated valves.

Low-Friction Valves Placing the switch to the left optimizes the response for low-friction, highperformance control valves. This setting provides for optimum response times when used with most low-friction control valves.

High-Friction Valves Placing the switch to the right optimizes the response for valves and actuators with high friction levels. This setting slightly slows the response and will normally stop limit cycling that can occur on high-friction valves.

7.4 Description of Cal DIP Switch Settings

The sixth DIP switch selects between two calibration options. The function of the Cal DIP switch is described below.

NOTE: The unit must be in OOS mode before a calibration sequence can begin.
Auto Select Auto if the valve/actuator assembly has an internal stop in the open position. In Auto mode the positioner will fully close the valve and register the 0% position and then open the valve to the stop to register the 100% position when performing a self-calibration. See detailed instructions in the next section on how to perform an auto positioner calibration.

Jog Select Jog if the valve/actuator assembly has no physical calibration stop in the open position. In the Jog mode the positioner will fully close the valve for the 0\% position and then wait for the user to set the open position using the Jog buttons labeled with the up and down arrows. See the detailed instructions in Section 7.6 on how to perform a manual calibration using the Jog buttons.

C WARNING: During the RE-CAL operation the valve may stroke unexpectedly. Notify proper personnel that the valve will stroke, and make sure the valve is properly isolated.

7.5 RE-CAL Operation

NOTE: The unit must be in OOS mode before a calibration sequence can begin.
The RE-CAL button is used to locally initiate a calibration of the positioner. Pressing and holding the RE-CAL button for approximately three seconds will initiate the calibration. If the Config-Switches option is enabled, the settings of all the configuration switches are read and the operation of the positioner adjusted accordingly. A RE-CAL can be aborted at any time by briefly pressing the RE-CAL button and the previous settings will be retained.

If the Quick Calibration switch (be careful not to confuse this with the RE-CAL button) is set to Auto and the valve/actuator assembly has the necessary internal stops the calibration will complete automatically. While the calibration is in progress you will notice a series of different lights flashing indicating the calibration progress. When the lights return to a sequence that starts with a green light the calibration is complete. An explanation of the various light sequences follows. The initial calibration of extremely large or small actuators may require several calibration attempts. The positioner adapts to the actuator performance and begins each calibration where the last attempt ended. On an initial installation it is recommended that after the first successful calibration that one more calibration be completed for optimum performance.

Abstract

C WARNING: When operating using RE-CAL or local control, the valve will not respond to external commands. Notify proper personnel that the valve will not respond to remote command changes, and make sure the valve is properly isolated.

7.6 Manual Jog Calibration Operation

If the Quick Calibration switch is set to Jog, the calibration will initially close the valve then cause a small jump in the valve position. The jog calibration process will only allow the user to manually set the span; zero position is automatically always set at the seat. If an elevated zero is needed a handheld or other PC-based configuration software is required. When performing a jog calibration, the LEDs will flash in a sequence of Y-R-R-G (yellow-red-red-green) which indicates that the user must use the Jog buttons ($\mathbf{\Delta}$ and $\boldsymbol{\nabla}$) to manually position the valve to the 100% position. When the stem is properly positioned press both the Jog buttons ($\mathbf{\Delta}$ and $\mathbf{\nabla}$) simultaneously again to register the 100% position and proceed. No more user actions are required while the calibration process is completed. When the lights return to a sequence that starts with a green light the calibration is complete. An explanation of the various light sequences follows.

7.7 Local Control of Valve Position

Local control of valve position can be achieved from the user interface by holding down both Jog buttons and the RE-CAL button simultaneously for three seconds. While in this mode the LEDs will flash a YGRR (yellow-green-red-red) sequence. Use the two Jog buttons ($\mathbf{\Delta}$ and $\mathbf{\nabla}$) to manually control the position of the valve. To exit the local control mode and return to normal operation, briefly press the RE-CAL button.

7.8 Factory Reset

To perform a factory reset, disconnect power, hold the RE-CAL button down, and reconnect power. Performing a factory reset will cause all of the internal variables, including calibration, to be reset to factory defaults. The positioner must be recalibrated after a factory reset. User configured limits, alarm settings, and valve information will also need to be restored.

C WARNING: Performing a factory reset may result in the inability to operate the valve until reconfigured properly. Notify proper personnel that the valve may stroke, and make sure the valve is properly isolated.

7.9 Logix 3400IQ Status Condition

The blink codes used to convey the status of the Logix 340010 digital positioner are described in the table below. In general, any sequence starting with a green light flashing first is a normal operating mode and indicates that there are no internal problems. Any sequence starting with a yellow light flashing indicates that the unit is in a special calibration or test mode, or that there was a calibra-
tion problem. Any sequence starting with a red light flashing indicates that there is an operational problem with the unit.

Table VII: Status and Conditions

\%	\%	Indication and Resolution
G --		Any sequence starting with a green light flashing first is a normal operating mode and indicates that there are no internal problems.
GGGG	1	Normal operation No errors, alerts, or warnings.
GGGY	2	Final Value cutoff active The command is below or above the user-set limits for tight shutoff feature. This is a normal condition for a closed valve. The factory default setting is 1% and 110% command. To clear the condition use handheld or Host software to reset the tight shutoff if the range is incorrect or adjust the command signal above the specified Final Value cutoff.
GGYR	4	Initializing This sequence should only be visible for three sequences when powering up the unit.
GGRG	5	Cycle limit exceeded (user-set) The cycle limit set by the user has been exceeded. To clear use handheld or Host software to reset.
GGRY	6	Travel limit exceeded (user-set) The total accumulated travel limit set by the user has been exceeded. To clear use handheld or Host software to reset.
GYYR	7	Soft Stop Low (user-set) The unit is being commanded to exceed a user-defined lower position limit and the internal software is holding the position at the limit. The function is similar to a mechanical limit stop except it is not active if the unit is un-powered. To clear the condition use handheld or Host software to reset the limit if more travel is needed or adjust the command signal back in the specified range.
GYRY	8	Soft Stop High (user-set) The unit is being commanded to exceed a user-defined upper position limit and the internal software is holding the position at the limit. The function is similar to a mechanical limit stop except it is not active if the unit is un-powered. To clear the condition use handheld or Host software to reset the limit if more travel is needed or adjust the command signal back in the specified range.
GRYR	9	Posalert Low (user-set) The position has reached or is exceeding a user-defined lower position indicator similar to a limit switch indicator. To clear the condition use handheld or Host software to reset the indicator if more travel is needed or adjust the command signal back in the specified range.
GRRY	10	Posalert High (user-set) The position has reached or is exceeding a user-defined upper position indicator similar to a limit switch indicator. To clear the condition use handheld or Host software to reset the indicator if more travel is needed or adjust the command signal back in the specified range.
Y---		Any sequence starting with a yellow light indicates that the unit is in a special calibration or test mode, or that there was a calibration problem.
YGYG	11	Signature test in progress This is a test initiated by Host software that can only be cancelled by that software.
YRGG	13	Stroke calibration in progress Calibration sequence started either using the local RE-CAL button or by a handheld or Host software. It may be cancelled by briefly pushing the RE-CAL button.

Table VII: Status and Conditions (continued)

䓂	\%	Indication and Resolution
YGRR	14	Local jog control mode The unit has been placed in a local override mode where the valve can only be stroked using the two local jog buttons. It may be cancelled by briefly pushing the RE-CAL button.
YYGR	15	Pressure calibration in progress Calibration sequence controlled by a handheld or Host software that can only be cancelled by that software.
YYYY	16	Local user interface disabled Host software has been used to disable the local interface. If local control is desired then the local interface must be re-enabled from the remote software. This code is only present for a short time when the RE-CAL button is pressed.
YRRG	17	Waiting Adjust to full open position setting from User—only used during Jog calibration see explanation in Section 7.5, "RE-CAL," for operation.
YRYG	18	Setting IL offset while calibrating An automatic step in the calibration process that is done with the valve at 50% position. This must be completed for proper calibration.
YRYY	19	No feedback motion while calibrating Indicates that there was no motion of the actuator based on the current stroke time configuration. Check linkages and air supply to make sure the system is properly connected. If the time out occurred because the actuator is very large then simply retry the RE-CAL and the positioner will automatically adjust for a larger actuator by doubling the time allowed for movement. This error may be cleared by briefly pushing the RE-CAL button, which will force the positioner to use the parameters from the last good calibration.
YRYR	20	Feedback 0\% out of range Calibration error indicating that the position sensor was out of range during the calibration of the closed position. To correct the condition, adjust the positioner mounting, linkage or feedback potentiometer to move the position sensor back into range then restart the calibration. This error may be cleared by briefly pushing the RE-CAL button, which will force the positioner to use the parameters from the last good calibration.
YRRY	21	Feedback $\mathbf{1 0 0 \%}$ out of range Calibration error indicating that the position sensor was out of range during the calibration of the open position. To correct the condition, adjust the positioner mounting, linkage or feedback potentiometer to move the position sensor back into range then restart the calibration. This error may be cleared by briefly pushing the RE-CAL button, which will force the positioner to use the parameters from the last good calibration.
YRRR	22	Feedback span too small The range of motion of the position feedback arm was too small for optimum performance. Check for loose linkages and/or adjust the feedback pin to a position closer to the follower arm pivot to create a larger angle of rotation and recalibrate. Briefly pushing the RE-CAL button acknowledges this condition and the positioner will operate using the current short stroke calibration if otherwise a good calibration.
YRGR	23	Feedback unstable while calibrating Check for loose linkages or loose positioner sensor. This error may be cleared by briefly pushing the RE-CAL button, which will force the positioner to use the parameters from the last good calibration. This error may appear on some very small actuators during the initial calibration. Redoing the calibration may clear the problem.
R---		Any sequence starting with a red light indicates that there is an operational problem with the unit.
RGRR	24	Position deviation (user-set) The position has exceeded user-defined error band between command and position.
RGYY	25	Pressure reading out of range The internal pressure sensors are either saturated with a pressure over 150 psi or the sensor has failed. Check supply pressure and if 0 K check the pressure sensor board connections and replace pressure sensor board if necessary.

Table VII: Status and Conditions (continued)

RGYR	26	Loss of supply pressure The Positioner has determined that the supply pressure is below 15 psi. Check the supply pressure and if OK check the pressure sensor board connections and replace pressure sensor board if necessary. Minimum recommended supply pressure is 30
psi for proper operation.		

7.10 Version Number Checking

The version number of the embedded code may be checked at any time except during a calibration by holding down the up arrow Jog button $(\mathbf{\Delta})$. This will not alter the operation of the unit other than to change the blink sequence to three blinks indicating the major version number. Holding the down arrow Jog button ($\mathbf{\nabla})$ will give the minor version number without affecting operation. The version codes are interpreted by adding up the numbers assigned according to the following table:

Color	First blink value	Second blink value	Third blink value
Green	0	0	0
Yellow	9	3	1
Red	18	6	2

For example if holding the up arrow Jog button ($\mathbf{\Delta}$) gave a G-G-R code, and holding the down arrow Jog button ($\boldsymbol{\nabla}$) gave a $Y-Y-G$ code then the resulting version number would be $(0+0+2) .(9+3+0)$ or version 2.12.

7.11375 Handheld Communicator

The Logix 3400IQ Quick Start Guide is available from a Flowserve representative.
The Logix 3400 IQ digital positioner supports and is supported by the 375 Handheld Communicator. The Device Description (DD) files and the manuals listed below can be obtained from the FF Foundation or from your Flowserve representative. For more information please see the following guides:

- Product Manual for the 375 Communicator.
- Logix 3400IQ Digital Positioner Reference Manual.

Diagnostic features such as the signature tests and ramp tests are performed internally. Certain calibration features such as actuator pressure sensor calibrations are performed using the 375 Handheld Communicator or using the Host software.

7.12 Device Description (DD) Files

The DD files for the Logix 3400 can be downloaded from the Flowserve website, http://fcd.flowserve. com/valves/softwareDownload.jsp, or the Foundation Fieldbus website, www.fieldbus.org.

7.13 Calibration

7.13.1 CALIBRATE_FLAGS

Position 0\% Calibration Flag in CALIBRATE_FLAGS

During stroke calibration, the Logix 3400 digital positioner checks to see if the linkage is placing the stem position sensor in range. If the valve stroke causes stem position measurement to go out of range in the closed position, a Position 0\% Flag will be generated. The valve stem will stop in the closed position and the red LED will blink. Linkage must be adjusted to bring the sensor in range. Special LED indication: If the linkage is out of range, the LEDs can be used as an adjustment guide. The LED will change from a red to yellow when the linkage is brought into range.

Position 100\% Calibration Flag in CALIBRATE_FLAGS

During stroke calibration, the Logix 34001Q digital positioner checks to see if the linkage is placing the stem position sensor in range. If the valve stroke causes stem position measurement to go out of range in the open position, a Position 100% Flag will be generated. The valve stem will stop in the open position and the red LED will blink. Linkage must be adjusted to bring the sensor in range. Special LED indication: If the linkage is out of range, the LEDs can be used as an adjustment guide. The LED will change from a red to yellow when the linkage is brought into range.

Position Span Flag in CALIBRATE_FLAGS

Position span is a check during stroke calibration to verify that the valve stem moved. The algorithm waits to see if no movement is detected when the valve is automatically stroked open. Anything that could prevent the valve from stroking will generate a Position Span error (no supply pressure, malfunctioning spool valve).

7.13.2 Control and Tuning

Setting P + I Parameters

Using the Host configurator, you can set individual tuning parameters. A few key points are mentioned below. (See Figure 11.)

GAIN_UPPER, GAIN_LOWER, and GAIN_MULT: These three parameters are related by the following formula.

Proportional Gain =

Maximum Gain - | deviation | x Gain Multiplier
If Proportional Gain < Minimum Gain, then Proportional Gain = Minimum Gain
This algorithm allows for quicker response to smaller steps yet stable control for large steps. Setting the gain multiplier to zero and max gain = min gain results in a typical fixed proportional gain.

The higher the gain multiplier, the larger the required deviation before the gain increases. Default values upon initiating a RESET to factory defaults (under LOAD_EE_DEFAULTS) are maximum gain = 2.0, minimum gain= 1.0 , and gain multiplier $=0.05$. These values will allow stable control on all Valtek control product actuator sizes.

Integral Gain (IGAIN): The integral gain is primarily for deviations due to temperature drift within the inner loop spool control. The factory default value is 10 . Although higher numbers can speed the time it takes to reach zero deviation, it can add overshoot if too large. It is recommended that maximum and minimum gains be adjusted while leaving integral gain fixed at 10 . Integration is disabled below a stem position of 3 percent and above a stem position of 97 percent. This is to prevent integration windup from calibration shifts due to lower pressure or a damaged seat that may prevent fully closing the valve.

Integration Summer: The integral summer within the Logix 34001 digital positioner is clamped at +20 percent and -20 percent. If the integration summer is fixed at +20 percent or -20 percent, it usually indicates a control problem. Some reasons for a clamped integration summer are listed below:

- Stroke calibration incorrect.
- Any failure which prevents stem position movement: stuck spool, handwheel override, low pressure.
- Incorrect inner loop offset.
- Loss of air supply on a fail in place actuator.

Writing a zero to integral gain (IGAIN) will clear the integral summer. The integral gain can then be returned to its original value.

Inner loop offset (IL_OFFSET): Three control numbers are summed to drive the inner loop spool position control: proportional gain, integral summer, and inner-loop offset.

Inner-loop offset is the parameter that holds the spool in the 'null' or 'balance' position with a control deviation of zero. This value is written by the positioner during stroke calibration and is a function of the mechanical and electrical spool sensing tolerances. However, if it becomes necessary to replace the driver module assembly or the software RESET calibration constants has been performed, it may be necessary to adjust this value. The method below should be used to adjust inner-loop offset.

Or simply perform a new stroke calibration.
From the fieldbus configurator:

- Set transducer block to OOS
- Enable Diagnostic Variable access in TEST_MODE
- Send a 50 percent command.
- Set integral to zero.
- Locate the DAC_PERCENT
- Write this percentage value to IL_OFFSET
- Write original value to Integral

These tuning sets can be used to obtain initial values for Flowserve products and comparable actuator sizes. The user may need to adjust this tuning to achieve optimal performance for a particular application.

Table VIII: Factory Tuning Sets

Mfg.	Tuning Set	GAIN LOWER	GAIN UPPER	GAIN MULT	Igain	Comparable Size (in²)
Valtek	VFactory_A	1.0	2.0	0.05	10	25
	VFactory_B	1.0	2.5	0.05	10	50
	VFactory_C	2.0	3.0	0.05	10	100
	VFactory_D	4.0	5.0	0.05	10	200
	VFactory_E	4.0	7.0	0.05	10	300
	Trooper 48	0.4	0.5	0.05	25	31
	Trooper 49	3.0	4.0	0.05	10	77.5
Kammer	Trooper 48	0.4	0.5	0.05	25	31
	Trooper 49	3.0	4.0	0.05	10	77.5
Automax	R1	0.3	0.5	0.05	10	3 to 5
	R2	1.0	1.5	0.05	10	9 to 12
	R3	1.3	2.0	0.05	10	16 to 19
	R4	2.0	2.5	0.05	10	27 to 37
	R5	2.5	3.6	0.05	10	48 to 75
	R6	4.0	5.0	0.05	10	109

Figure 11: Logix 3400 Block Diagram

7.14 Alerts

7.14.1 FINAL_VALUE_CUTOFF

The FINAL_VALUE_CUTOFF or tight shutoff feature of the Logix 3400IQ digital positioner allows the user to control the level at which the command signal causes full actuator saturation in the closed or open position.

This feature can be used to guarantee actuator saturation in the closed or open position or prevent throttling around the seat at small command signal levels. To enable, use configuration to apply the desired FINAL_VALUE_CUTOFF threshold.

NOTE: The positioner automatically adds a 1 percent hysteresis value to the FINAL_VALUE_CUTOFF_ LO setting to prevent jumping in and out of saturation when the command is close to the setting.

7.14.2 Effects of FINAL_VALUE_CUTOFF on Operation

With the FINAL_VALUE_CUTOFF_LO set at 5 percent the positioner will operate as follows: Assume that the present command signal is at 50 percent. If the command signal is decreased, the positioner will follow the command until it reaches 5 percent.

At 5 percent, full actuator saturation will occur. The actuator will maintain full saturation below 5 percent command signal. Now, as the command increases, the positioner will remain saturated until the command reaches 6 percent (remember the 1 percent hysteresis value added by the positioner). At this point, the stem position will follow the command signal.

If the FINAL_VALUE_CUTOFF_LO is set to 3 percent but the valve will not go below 10 percent, SOFTSTOP_LOW may be enabled. The lower soft limit must be less than or equal to 0 percent in order for the FINAL_VALUE_CUTOFF_LO to become active.

If soft stops are active (ie: SOFTSTOP_LOW = 0 or SOFTSTOP_HIGH = 100) FINAL_VALUE_CUTOFF is disabled.

7.14.3 Soft Limits

Unlike position alerts, soft limits prevent the stem position from going below or above the configured limits. If the command signal is trying to drive the position past one of the limits, the yellow LED will blink but the stem position will remain at the set limit.

7.14.4 Travel Accumulator

The travel accumulator is equivalent to a car odometer and sums the total valve movement. Using the user defined stroke length and travel dead-band, the Logix 34001Q digital positioner keeps a running total of valve movement. When the positioner first powers up, high and low dead-band limits are calculated around the present position. When the stem position exceeds the travel dead-band, the movement from the center of the deadband region to the new position is calculated and added to the travel accumulator. From this new position, deadband high and low limits are again calculated.

EXAMPLE: The Logix 34001 digital positioner has a default dead-band configuration of 20 percent. The valve has a 4 inch linear stroke. When the valve first powers up, the command signal is 50 percent. The unit will calculate a high travel threshold of 70 percent (50 percent present position plus 20 percent dead-band) and a low travel threshold of 30 percent (50 percent present position minus 20 percent dead-band). As long as the stem position remains greater than 30 percent and less than 70 percent, no additions are made to the travel accumulator. Now, assume the stem position moves to 80 percent that is outside the present dead-band. The Logix 340010 digital positioner calculates the stem movement and adds this number to the travel accumulator.

80 percent (present position) -50 percent (previous) $=$
30 percent movement $\times 4$-inch stroke $=1.2$ inches
So, 1.2 inches is added to the travel accumulator. New dead-band thresholds of 100 percent (80 percent present position plus 20 percent dead-band) and 60 percent (80 percent present position minus 20 percent dead-band) are calculated. This process continues as the stem position moves throughout its stroke range.

7.14.5 Cycle Counter

The cycle counter is another means of monitoring valve travel. Unlike the travel accumulator, the stem position must do two things to count as a cycle: exceed the cycle counter dead-band and change direction. A cycle counter limit can also be written into the positioner. If this limit is exceeded, the yellow LED will blink.

7.14.6 Position Deviation

If the stem position differs from the control command by a certain amount for a given length of time, the yellow LED will blink to signify excess deviation. The trip point and settling times are set from the transducer function block.

7.14.7 Advanced Features

NOTE: These features are contained in the transducer function block. Refer to the Reference Manual for a more detailed explanation.

7.14.8 Standard vs. Advanced Diagnostics

Advanced diagnostics models add top, bottom, and supply pressure sensors. This allows for more diagnostic calculations such as loss of pressure, advanced signatures, and troubleshooting.

7.14.9 Temperature and Pressure Units

The desired temperature and pressure units can be set during configuration. Once set, all readings will be displayed in the desired units.

7.14.10 Stroke Length

Stroke length is used by the travel accumulator. When the stroke length and units are set, the length is used to determine the total travel accumulated. The travel accumulator will have the units associated with stroke.

EXAMPLE: Stroke length is set to four inches. If the valve is moved from 0 percent to 100 percent, four inches will be added to the travel accumulator. The travel accumulator units will be inches. If Stroke length is 90 degrees for a rotary, the travel accumulator will now have units of degree. A 0 percent to 100 percent stroke will add 90 to the travel accumulator.

NOTE: Stroke length is for information only and is not used during calibration.

Table IX: Transducer Block Characterization Parameters

Parameter	Description	Value - Meaning	Comments
MODE_BLK	The operating mode of the transducer block	Auto - Auto (target mode)	The transducer block must be out of service before characterization can be edited or changed
		OOS - Out of Service	
CONTROL_ FLAGS	Byte values which select positioner operation features	1-Quick Opening Curve*	Loads factorydefined QO curve as custom curve.
		2 - Equal Percent Curve*	Loads factorydefined equal percent curve as custom curve.
		3 - Actuator Type	
		4 - Advanced Model	
		5 - Rotary Actuator Gain	
		6 - Custom Characterization Active	Activates custom curve. If Off, response is Linear.
		7 - Fail Position TBD	
		8 - Air Action	
CURVEX	Numeric X value array for custom point. ($\times 21$ array points)	X-axis value for custom stroke characterization point. Range -10 to 110	Pair each X -value with corresponding Y-value to define the desired point. Values must be in ascending (or equal) order.
CURVEY	Numeric Y value array for custom point. (1×21 array points)	Y-axis value for custom stroke characterization point. Range -10 to 110	

*NOTE: Must not be selected if a custom curve is to be created or edited.

7.15 Characterization Retention

Once a custom curve has been loaded into the Logix 34001 digital positioner's memory it is retained in the EPROM until it is either edited or replaced. Turning Custom Characterization Active on or off now selects between a linear response (off), or the new custom curve (on). If either of the other two factory curves is selected it will overwrite the custom curve in RAM only. The custom user-defined curve will automatically be activated again when the factory curve is deselected.

7.15.1 Initiating a Valve Signature

A feature of the Logix 3400 positioner is the ability to capture and store a valve diagnostic signature. A signature is the collected data response of the valve to a predefined set of operating conditions. This stored data can later be uploaded to the host system for analysis of potential problems. By comparing a baseline signature, when the valve is new, to subsequent signatures at later times, a rate of change can be tracked which can help predict possible faults in the valve before they happen. This is called 'predictive maintenance'. It is important to note that the purpose of the positioner is to act as the data acquisition device for the signature. Analysis of the data is not done on the device, but in the supervisory system.

NOTE: Signature data is lost if the positioner is reset or if the power is cycled

7.15.2 System Preparation

C WARNING: By definition, the collection of the signature requires the unmanaged operation of the positioner. Therefore, the process must be in a safe operating mode where unexpected movement of the valve will not cause a hazardous condition.

Before a valve signature can be run, the Transducer Block must Out-of-Service (OOS).

7.15.3 Signature Procedure

The following steps are an example of how to initiate a ramp signature capture.

1. Make sure the process is in safe condition and notify the control room that the valve will temporarily be taken off-line.
2. Verify preparedness to proceed.
3. Put the Transducer block MODE_BLK OOS
4. Set SIG_START to desired value.
5. Set SIG_STOP to desired value.
6. Set SAMPLE_TIME to desired value (typically 0.3).
7. In SIG_FLAGS, select; STEP_RAMP, PRESS_MEAS.
8. Write values to the Logix 340010 digital positioner.
9. Set RAMP_RATE to desired value (typically 100).
10. Write value to the Logix 3400 IQ digital positioner.
11. In SIG_FLAGS, select BEGIN_SIG.
12. Write value to the Logix 3400IQ digital positioner.
13. The valve will stroke to the beginning position, as defined by SIG_START and will begin ramping to the desired ending position, as defined by SIG_STOP.

Notice that SIG_COUNTER will increment while this takes place. (Typically approximately 670 data sets will be collected with the above settings and full stroke of the valve. Exact numbers will vary.)
14. SIG_FLAGS indicates SIG COMPLETE.
15. Return the MODE_BLK to auto.
16. Notify control room the valve is back on-line. The stored signature will remain in the Logix 3400 IQ digital positioner RAM until the either the unit is powered down, or another signature is taken which overwrites the previous one.

7.16 Step Signature

If a step signature was desired, simply do not select STEP_RAMP in SIG_FLAGS, and then set the STEP_TIME prior to selecting BEGIN_SIG.

7.16.1 Collection of Stored Signature

The collection of the stored signature is accomplished by the host system. It is not part of the device. See host system programming. A simple utility using National Instruments NI-FBUS is available from Flowserve for retrieving a signature file.

The retrieved file is stored in a text format that can be imported into other programs for plotting and analysis. Contact Flowserve for more details.

7.17 Glossary

A/D Also called ADC. Analog-to-digital converter. An A/D converts an analog signal into an integer count. This integer count is then used by the microcontroller to process sensor information such as position, pressure, and temperature.

D/A Also called DAC. Digital-to-analog converter. A D/A converts an integer count into an analog output signal. The D / A is used to take a number from the microcontroller and command an external device such as a pressure modulator.

EEPROM (Electrically Erasable Programmable Read Only Memory) A device that retains data even when power is lost. Electrically erasable means that data can be changed. EEPROM have a limited number of times data can be rewritten (typically 100,000 to 1,000,000 writes).

Micro-controller In addition to an integral CPU (microprocessor), the micro-controller has built in memory and I / O functions such as A / D and D / A.

Microprocessor Semiconductor device capable of performing calculations, data transfer, and logic decisions. Also referred to as CPU (Central Processing Unit).

Protocol A set of rules governing how communications messages are sent and received.
Resolution Resolution is a number which indicates the smallest measurement which can be made. You will often see analog-to-digital (A/D) converters referred to as a 10 -bit A/D or a 12-bit A/D. 10-bit and 12-bit are terms which indicate the total number of integer counts which can be used to measure a sensor or other input. To determine the total integer count, raise 2 to the power of the number of bits.

Example: 12-bit A/D
Total integer number $=2$
Number of Bits $=2^{12}=4096$
Resolution is the measurement range divided by the maximum integer number.
Example: A valve has a 2 -inch stroke and a 12 -bit A / D is used to measure position.
Resolution = Stroke/(Maximum Integer for 12-bit) $=2$ inch/4096 $=0.000488$ inches
Sampling Taking readings at periodic time intervals.
Serial Channel Channel that carries serial transmission. Serial transmission is a method of sending information from one device to another. One bit is sent after another in a single stream.
7.18 Transducer Block Parameters

Variable No.	Variable	Logix Positioner		Fieldbus Datatypes	R/N	$\begin{aligned} & \text { Low } \\ & \text { Limits } \end{aligned}$	Up Limits	Description
		Type	Fix Pt Rd					
CONTROL								
1	AD_RAW_FB	signed int	No	Integer 16	R	0	4095	12-bit A/D Feedback counts
2	FINAL_VALUE	signed int	/100	DS-65	RW**	-10\%	110\%	Digital Command signal in \%
3	FINAL_POSITION_VALUE	signed int	/100	DS-65	R			Actual Feedback position in \%
4	ERROR	signed int	/100	float	R			Position deviation in \%
5	DAC_PERCENT	signed int	/100	float	R	0\%	100\%	12-bit DAC output in \%
6	CONTROL_FLAGS	unsigned char	No	Bit String	R W *			Valve parameters, ATO,ATC,etc.
7	PGAIN	signed int	/100	float	R			Present proportional gain
8	GAIN_UPPER	signed int	/100	float	R W *			Upper gain limit
9	GAIN_LOWER	signed int	/100	float	R W^{*}			Lower gain limit
10	GAIN_MULT	signed int	/1000	float	RW**			Gain multiplier
11	IGAIN	signed int	No	Integer 16	RW**	1		Integral Gain
12	INTEGRAL_SUM	signed int	/100	float	R	-20\%	20\%	Integration summer in \%
13	IL_OFFSET	signed int	/100	float	R W *			Inner-loop offset
14	ALPHA_FILT	signed int	/1000	float	R W^{*}			Recursive filter " alpha" coefficient
15	STATUS_FLAGS	unsigned char	No	Bit String	R W^{*}			Status flag variable for Fieldbus
16	CMD_USED	signed int	/100	float	R	-10\%	110\%	Command after characterization
Continued on Page 42								

[^0]| Variable No. | Variable | Logix Positioner | | Fieldbus Datatypes | R/W | Low Limits | Up Limits | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Type | Fix Pt Rd | | | | | |
| 17 | FAIL_MODE | unsigned char | No | Unsigned 8 | R/W* | | | Failure of Internal Communications on loss, set defined operation |
| 18 | PRESS_WINDOW | signed int | /100 | float | R/W* | 0\% | 100\% | Window size to lock in pressure control |
| 19 | PRESS_HYST | signed int | /100 | float | R/W* | 0\% | 100\% | Hyst. added to prevent window from unlocking |
| 20 | PRESS_GAIN | unsigned int | /100 | float | R/W* | 0 | 100 | Gain value for pressure control |
| 21 | StrokeRate open | unsigned | /100 | float | R/W | 0 | | Opening rate limitor |
| 22 | StrokeRate close | unsigned | /100 | float | R/W | 0 | | Closing rate limitor |
| CALIBRATION | | | | | | | | |
| 28 | CAL_FullScale | unsigned | /100 | float | R/W | 0 | 4094 | Calibration full scale ADC counts minimum |
| 29 | Auto_Tune | unsigned | /100 | float | R/W | 0 | | Tuning multiplier |
| 30 | TP_ZERO | signed int | No | Integer 16 | R/W* | 1 | 4094 | Top actuator 0 pressure 10-bit A/D counts |
| 31 | TP_SPAN | signed int | No | Integer 16 | R/W* | 1 | 4094 | Top actuator cal. pressure 10-bit A/D counts |
| 32 | TP_FULL_SCALE | signed int | No | Integer 16 | R/W* | 1 | 4093 | Top actuator span 10-bit A/D counts |
| 33 | BP_ZERO | signed int | No | Integer 16 | R/W* | 1 | 4094 | Bot actuator 0 pressure 10-bit A/ counts |
| 34 | BP_SPAN | signed int | No | Integer 16 | R/W* | 1 | 4094 | Bot actuator cal. pressure 10-bit A/D counts |
| 35 | BP_FULL_SCALE | signed int | No | Integer 16 | R/W* | 1 | 4093 | Bot actuator span 10-bit A/D counts |
| 36 | CALIBRATE | unsigned char | No | Integer 8 | R/W* | | | Calibration Mode setting |
| 37 | DAC_VALUE | unsigned int | No | Integer 16 | R/W* | 0 | 4095 | Binary value written to 12-bit D/A |

Continued on Page 43
Table X: Continued from Page 41
Continued on Page 44

Variable No.	Variable	Logix Positioner		Fieldbus Datatypes	R/W	Low Limits	Up Limits	Description
		Type	Fix Pt Rd					
56	TRAVEL_ENG	float	No	float	R/W	0	4.29×10^{9}	Valve travel accumulator in eng units
57	TRAVEL_DEADBAND	signed int	/100	float	R/W	0	100\%	Travel accumulator deadband in \%
58	TRAVEL_ALERT	float	No	float	R/W	0	4.29×10^{9}	Travel accumulator alert limit
59	STROKE_ENG	float	No	float	R/W	0	4.29×10^{9}	Valve stroke in eng units(inches or deg)
60	TRAVEL_UNITS	unsigned char	No	Unsigned 8	R/W	0	4.29×10^{9}	Code for present engineering units
61	POSALERT_HIGH	signed int	/100	float	R/W	-10\%	110\%	Position Alert High Limit in \%
62	POSALERT_LOW	signed int	/100	float	R/W	-10\%	110\%	Position Alert Low Limit in \%
$\begin{gathered} 63-68200 \\ -214 \end{gathered}$	CURVEX (21 points)	signed int	/100	float [21]	R/W*	-10\%	110\%	Custom Characterization x -axis
$\begin{gathered} 69-74215 \\ -229 \end{gathered}$	CURVEY (21 points)	signed int	/100	float [21]	R/W*	-10\%	110\%	Custom Characterization y-axis
75	TRAVEL_FLAGS	unsigned char	No	Bit Strings	R	-10\%	110\%	Travel alarm flags
76	POSDEV_DEADBAND	signed int	/100	float	R/W	100\%	0.10\%	Position Deviation Deadband
77	POSDEV_TIME	unsigned int	/10	float	R/W			Position Deviation Time in seconds
78	SIG_START	signed int	/100	float	R/W	-10\%	110\%	Signature Starting Command in \%
79	SIG_STOP	signed int	/100	float	R/W	-10\%	110\%	Signature Stopping Command in \%
80	RAMP_RATE	unsigned char	300/	float	R/W	>1		Ramping time in \%/minute
81	STEP_TIME	unsigned int	/100	float	R/W	0 sec .	650 sec .	Settling time after step in seconds
82	SIG_FLAGS	unsigned char	No	Unsigned 8	R/W			Signature Flags
83	SAMPLE_TIME	unsigned char	/100	float	R/W	0.1 sec		Sampling time in seconds
Continued on Page 45								

Table X: Continued from Page 44

Variable No.	Variable	Logix Positioner		Fieldbus Datatypes	R/W	Low Limits	Up Limits	Description
		Type	Fix Pt Rd					
84	SIG_COUNTER	unsigned int	No	Unsigned 16	R/W			Number of collected sample points
INTERNAL DIAGNOSTICS								
90	INTAD_RAW1	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D temperature counts
91	INTAD_RAWTP	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D counts,top actuator pres
92	INTAD_RAWBP	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D counts,bot actuator pres
93	INTAD_RAWSP	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D counts,supply pressure
94	INTAD_RAW3	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D 2.5VDC Ref counts
95	INTAD_RAW4	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D IL hall sensor counts
96	INTAD_RAW5	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D 12-bit DAC output
97	INTAD_RAW6	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D modulator current counts
98	INTAD_RAW8	unsigned int	No	Unsigned 16	R	0	4095	10-bit A/D zero ref. counts
99	TEMPERATURE	signed int	No	Integer 16	R			Temperature, reported in TEMPunit
100	Port_1 (Port 1)	signed long int	/100	float	R			Port 1 pressure in PRESSunit
101	Port_2 (Port 2)	signed long int	/100	float	R			Port 2 pressure in PRESSunit
112	TEST_MODE	unsigned char	No	Unsigned 8	R/ ${ }^{*}$			Off line tests and enable diagnostic update
MISCELLANEOUS FIELDBUS FUNCTIONS								
NA	SIG_INDEX	NA	NA	Unsigned 16	R/ ${ }^{*}$			Pointer used for data transition
NA	SIG_DATA	NA	NA	float [4]	R			Array of signature data. Order of data is: Command, position, port 2 / 1port 1 pressure

Continued on Page 46

Variable No.	Variable	Logix Positioner		Fieldbus Datatypes	R/W	$\begin{aligned} & \text { Low } \\ & \text { Limits } \end{aligned}$	Up Limits	Description
		Type	Fix Pt Rd					
NA	MFG_PHONE	NA	NA	Visible String	RNW			Manufacture's phone number field
NA	PUR_ORDER_NUM	NA	NA	Visible String	RNW			Purchase order number field
NA	GENERIC_PARM_NUM	NA	NA	DS-66	RNW			Input point for desired Logix variable
NA	GENERIC_PARM_VAL	NA	NA	Unsigned 32	R/W			Data for selected Logix variable
NA	BLOCK_TEST	NA	NA	$\begin{aligned} & \hline \text { UnsigneOd } \\ & 8[8] \end{aligned}$	R/W			Special diagnostics array
102	SUPPLY_PRESSURE	signed long int	/100	float	R			Air supply pressure in PRESSunits
103	VOLT_REFERENCE	signed int	/1000	float	R			12-bit A/D, 2.5VDC reference (Volts)
104	HALL_SENSOR	signed int	/1000	float	R			Inner-loop hall sensor output (Volts)
105	DAC_CHECK	signed int	/1000	float	R			12-bit D/A output (Volts)
106	MOD_CURRENT	signed int	/100	float	R			Modulator piezo voltage (VDC)
107	IL_CHK	signed int	R	Interger 16				Inner-loop check
108	INTERNAL_FLAGS	unsigned char	No	Bit String	R			internal errors related to electronics
109	PRESS_FLAGS	unsigned char	No	Bit String	R			error flags related to the pressure sensors
110	PRESS_UNITS	unsigned char	No	Unsigned 8	R/W			Units user wants reported for press
111	TEMP_UNITS	unsigned char	No	Unsigned 8	RNW			Units user wants reported for temperature
VALVE, ACTUATOR, AND POSITIONER INFORMATION								
130	VALVE_MAN_ID	unsigned char	No	Unsigned 32	R/W			Valve manufacturer
131	VALVE_TYPE	unsigned char	No	Unsigned 8	RNW			Valve type
132	VALVE_SIZE	unsigned char	No	Unsigned 8	R/W			Valve size in inches

Continued on Page 48
$\stackrel{\infty}{\infty}$

Variable No.	Variable	Logix Positioner		Fieldbus Datatypes	R/W	$\begin{aligned} & \text { Low } \\ & \text { Limits } \end{aligned}$	Up Limits	Description
		Type	Fix Pt Rd					
152	ACT_SIZE	unsigned char	No	Unsigned 8	R/W			Actuator size
153	SPRING_TYPE	unsigned char	No	Unsigned 8	R/W			Spring type: single, dual, etc.
154	SPOOL_ID	unsigned char	No	Unsigned 8	R/W			Spool identification
155	ELECTRONICS_SN	unsigned char	No	Visible String	R/W*			Electronics serial number
156	SOFTWARE_VER	unsigned int	No	Unsigned 16	R/W			Positioner embedded code version
157	VALVE_SN	unsigned char	No	Visible String	R/W			Valve serial number
158	PO_DATE	unsigned char	No	Visible String	R/W			PO date

Table X: Continued from Page 48

Variable No.	Variable	Logix Positioner		Fieldbus Datatypes	R/W	Low Limits	Up Limits	Description
		Type	Fix Pt Rd					
158	INSTALL_DATE	unsigned char	No	Visible String	R/W			Installation date
MISCELLANEOUS COMMANDS								
171	LOAD_EE_DEFAULTS	unsigned char	No	Unsigned 8	R/W*			EEPROM write mode
172	ENG_RELEASE_NUM	unsigned int	No	Unsigned 8	R			Embedded engineering release number
173	MISC_FLAGS	unsigned char	No	Unsigned 8	R/W*			Miscellaneous Flags, Quick-Cal Enable/ Disable, Large actuator
DATA FORMAT								
signed/unsigned characters		1 byte	Available on both Standard and Advanced					
signed/unsigned intergers		2 bytes	Advanced models only					
signed/unsigned long intergers		4 bytes						
float (4 bytes)		IEEE-754						
READ/WRITE								
$\mathrm{R}=$ Read only								
R/W= Read/Write access								
R/W ${ }^{*}=$ Transducer block must be out of service to write								

8 Maintenance and Repair

8.1 Driver Module Assembly

The driver module assembly moves the spool valve by means of a differential pressure across its diaphragm. Air is routed to the driver module from the regulator through a flexible hose. A barbed fitting connects the flexible hose to the driver module assembly. Wires from the driver module assembly connect the hall effect sensor and the piezo valve modulator to the main PCB assembly.

Driver Module Assembly Replacement

To replace the driver module assembly, refer to Figures 12-16 and 22 and proceed as outlined below. The following tools are required:

- Flat plate or bar about $1 / 8^{\prime \prime}$ thick
- Phillips screwdriver
- $1 / 4$ " nutdriver

C WARNING: Observe precautions for handling electrostatically sensitive devices.

Figure 12: Driver Module Assembly

Figure 13: Spool Valve Cover Assembly

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the driver module cover (Figure 15), using a flat bar or plate in the slot to turn the cover.
4. Remove the spool valve cover by removing the screw and sliding the cover assembly backwards until the tab is clear of the slot (Figure 13). The sheet metal cap, hydrophobic filter, and 0-ring should be removed with the spool valve cover. It is not necessary to take these parts out of the spool valve cover.
5. Being careful not to lose the nylon washer, remove the Phillips-head screw that attaches the driver module to the main housing (Figure 14).

Figure 14: Spool and Block

C WARNING: Spool (extending from the driver module assembly) is easily damaged. Use extreme caution when handling spool and spool valve block. Do not handle the spool by the machined portions of spool. The tolerances between the block and spool are extremely tight. Contamination in the block or on the spool may cause the spool to hang.

Figure 15: Driver Module Barbed Fitting

6. Remove the spool valve block by removing the two Phillips-head screws and carefully sliding the block off the spool (Figure 14).
7. Carefully remove the spool by sliding the end of the spool out of the connection clip. Excessive force may bend spool.
8. Remove the main cover.
9. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
10. Disconnect the flexible tubing from the barbed fitting at the driver module assembly (see Figure 15).
11. Use the $1 / 4$ " nutdriver to remove the barbed fitting from the driver module assembly.
12. Unplug the two wiring connections that link the driver module assembly to the main PCB assembly.
13. Feed the two wires on the driver module back into the driver module compartment so that they stick out the driver module opening (see Figure 12). This will allow the driver module to thread out without tangling or cutting the wires.
14. Grasp the base of the driver module and turn it counterclockwise to remove. After it is threaded out, carefully retract the driver module from the housing.

Figure 16: Main PCB Assembly

15. Remove the barbed fitting from the side of the new driver module using the $1 / 4$ " nutdriver.
16. Verify that the 0 -ring is in place on the top of the new driver module. Lay the wires back along the side of the driver module as shown in Figure 12 and hold the wires in position by hand.
17. Gently insert the driver module into the driver module compartment in the housing. Turn the driver module clockwise to thread it into the housing. Continue rotating the driver module until it bottoms out.
18. Once the driver module has bottomed out so that the threads are fully engaged, rotate the driver module counter clockwise until the flat on the driver module and the flat on the housing are aligned. This will align the screw hole for the next step.
19. Verify that the nylon gasket is in the counter bore in the driver module retaining screw hole as shown in Figure 14.
20. Insert a driver-to-housing screw into the driver housing through the counterbored hole in positioner main housing. Tighten with a Phillips screwdriver.
21. Reach through the main compartment into the driver module compartment of the positioner and install the barbed fitting on the side of the driver module using the $1 / 4$ " nutdriver.

NOTE: Do not mix the barbed fitting with those from older Logix positioners. Older models contain orifices that will not work in the Logix 3400IQ model. Orifices are brass-colored, barbed fittings are silver-colored.
22. Reconnect the flexible tube coming from the regulator to the barbed fitting.
23. Feed the driver module wires into the main chamber of the housing, and connect them to the main PCB Assembly.
24. Verify that the three 0 -rings are in the counterbores on the machined platform where the spool valve block is to be placed (Figure 22).
25. Carefully slide the spool into the connecting clip on the top of the driver module assembly.
26. Carefully slide the block over the spool, using the machined surface of the housing base as a register (Figure 14). Slide the block toward the driver module until the two retaining holes line up with the threaded holes in the base.
27. Install two spool-valve screws and tighten securely with a Phillips screwdriver (see Figure 14).
28. Slide the spool valve cover assembly over the spool valve until the tang engages into the housing slot. Install spool valve cover screw and tighten securely (see Figure 13).
29. Install the plastic board cover. Insert the three retaining screw through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten (see Figure 16).
30. Reconnect power and air supply to the positioner and perform a stroke calibration.
31. Reinstall all covers.

8.2 Regulator

The regulator reduces the pressure of the incoming supply air to a level that the driver module can use.

Replacing Regulator

To replace the regulator, refer to Figures 12 and 16 and proceed as outlined below. The following tools are required:

54 - Phillips screwdriver

- $1 / 4$ " nutdriver

C WARNING: Observe precautions for handling electrostatically sensitive devices.

1. Make sure valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the main cover.
4. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
5. Remove the retaining screw from the main PCB assembly.
6. Remove the five wire connections from the main PCB assembly and lift the main PCB out of the housing.
7. Remove the four screws from the regulator base. Verify that as regulator is removed, the 0-ring and filter remain in the counter-bore.
8. Remove tubing and barbed fitting from the regulator base.
9. Install barbed fitting and tubing to the new regulator.
10. Verify 0 -ring and filter are in the counterbore. Install new regulator using $8-32 \times 1 / 2$ " screws.

NOTE: Do not mix the regulator with those from older Logix positioners. Older models contain regulators with different settings that will not work in the Logix 3400IQ model. The regulator pressure setting is printed on the top of the regulator. The Logix 3400IQ regulator is set to 17.4 psig.
11. Reinstall the five wire connections.
12. Install the main PCB into the housing. Insert the retaining screw through the board into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten.
13. Install the plastic board cover. Insert the three retaining screws through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten (see Figure 16).
14. Reinstall all covers.

8.3 Checking or Setting Internal Regulator Pressure

To check or set the internal regulator pressure, refer to Figure 17 and proceed as outlined below. The tools and equipment used in the next procedure are from indicated vendors. The following tools are required:

- Calibrated pressure gauge (0 to 30 psi)
- $1 / 16$ " flexible tubing
- Barbed Tee (Clippard Minimatic part number T22-2 or equivalent)
- 3/32" Allen wrench
- $3 / 8$ " open-end wrench

C WARNING: Observe precautions for handling electrostatically sensitive devices.

Figure 17: Driver Module Regulator Pressure Check

1. Make sure the valve is bypassed or in a safe condition.
2. Remove the main cover.
3. Remove the plastic board cover by removing the three retaining screws.
4. Remove the $1 / 16$ " flexible tubing from the barbed fitting on the side of the driver module.
5. Obtain a barbed tee and two pieces of $1 / 16^{\prime \prime}$ flexible tubing, a few inches in length each.
6. Position the barbed tee between the internal regulator and the driver module by connecting the $1 / 16^{\prime \prime}$ flexible tubing, found in the positioner, to one side of the barbed tee. Using one of the new flexible tubing pieces, connect the barbed tee to the barbed fitting on the side of the driver module. Connect the remaining port on the barbed tee to a 0 to 30 psi pressure gauge.
7. Reconnect the air supply to the positioner and read the internal regulator pressure on the 0 to 30 psig gauge. The internal pressure should be set to 17.4 ± 0.2 psig. If adjustment is needed, loosen the set screw retaining nut on the top of the regulator using the $3 / 8^{\prime \prime}$ open-end wrench. Then adjust the regulator pressure by turning the set screw on the top of the regulator with the $3 / 32^{2 \prime}$ Allen wrench.
8. Once the regulator pressure is set, tighten the set screw retaining nut on the top of the regulator, remove the air supply to the positioner, remove the barbed tee, and reconnect the flexible tubing from the regulator to the barbed fitting on the side of the driver module.
9. Install the plastic board cover. Insert the three retaining screws through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten (see Figure 16).
10. Reinstall all covers.

8.4 Spool Valve

The spool valve routes the supply air to one side of the actuator while venting the opposite side (see Figure 1). The position of the spool valve is controlled by the driver module.

Replacing the Spool Valve

To replace the spool valve, refer to Figures 12, 14 and 21 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the spool valve cover by removing the screw and sliding the cover assembly backwards until the tab is clear of the slot. It is not necessary to remove the sheet metal cap, hydrophobic filter, or 0 -ring from this assembly (Figure 18).

C WARNING: The spool (extending from the driver module assembly) is easily damaged. Use extreme caution when handling spool and spool valve block. Do not handle the spool by the machined portions of spool. The tolerances between the block and spool are extremely tight. Contamination in the block or on the spool may cause the spool to hang.
4. Remove the spool valve block by removing the two Phillips-head screws and carefully sliding the block off the spool (Figure 14).
5. Carefully remove spool by sliding end of spool out of connecting clip. Excessive force may bend the spool.
6. Verify that the three 0 -rings are in the counterbores on the machined platform where the new spool valve block is to be placed (Figure 22).
7. Carefully slide the spool into the connecting clip of the driver module assembly.
8. Carefully slide the block over the spool, using the machined surface of the housing base as a register (Figure 14). Slide the block toward the driver module until the two retaining holes line up with the threaded holes in the base.
9. Install two spool valve screws and tighten securely with a Phillips screwdriver (see Figure 14).
10. Slide the spool valve cover assembly over the spool valve until the tang engages into the housing slot. Install the spool valve cover screw and tighten securely (see Figure 13).
11. Reconnect power and air supply to the positioner and perform a stroke calibration.

8.5 Spool Valve Cover

The spool valve cover incorporates a hydrophobic filter element in a two-piece cover. This protects the spool valve chamber from dirt and moisture and provides a low back pressure vent for exhaust air from the spool valve.

Replacing Filter in Spool Valve Cover

To replace the filter in the spool valve cover, refer to Figures 13 and 18 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

1. Remove the spool cover by removing the screw and sliding the cover assembly backwards until the tab is clear of the slot. The sheet metal cover may be removed and cleaned with a brush or by blowing out with compressed air (Figure 13).
2. Remove the 0 -ring from around the hydrophobic filter element and set aside (Figure 18).
3. Remove the molded filter element by pulling it straight out of the chamber cover vent piece.
4. Install 0-ring into base of chamber cover vent piece as shown in Figure 18.
5. Place new molded filter element into the chamber cover vent piece. This filter element provides part of the track to secure the 0 -ring installed in the last step.
6. Place spool valve shroud onto spool valve cover.
7. Place the spool valve cover assembly in place by setting it on the ramp and sliding it until the tab seats in the slot (Figures 13 and 18) and secure with a 8-32 screw.

Figure 18: Spool Valve Cover Assembly

8.6 Stem Position Sensor

The position feedback assembly transmits valve positions information to the processor. This is accomplished by means of a rotary position sensor that connects to the valve stem through a feedback linkage. To provide for accurate tracking of the pin in the slot, the follower arm is biased against one side of the slot with a rotary spring. This spring also automatically moves the position feedback assembly to its limit in the unlikely event of failure of any component in the linkage.

Stem Position Sensor Replacement

To replace the stem position sensor, refer to Figure 16, 19 and 22 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

C WARNING: Observe precautions for handling electrostatically sensitive devices.

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the main cover.
4. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
5. Disconnect the position sensor wires from the main PCB assembly.
6. Remove the two rotary position sensor-retaining screws and lift the sensor out of the housing.
7. Turn the new position sensor shaft until the dot on the side of the shaft is aligned with the wires on the side of the position sensor (Figure 19).
8. Insert the position sensor into the shaft with the wires pointing toward the main PCB assembly. Turn the position sensor clockwise until bolting slots align with the housing screw holes and the wires on the sensor protrude over the main PCB assembly.

NOTE: Do not mix the position sensor with those from older Logix positioners. Older models contain sensors with different ranges that will not work in the Logix 34001Q model. The wires on the Logix 3400IQ position sensor are red, white and black.
9. Carefully center the position sensor on the shaft bore, insert and tighten the screws. Do not overtighten.
10. Route the wires along the side of the position sensor and reconnect to the main PCB assembly.
11. Install the plastic board cover. Insert the three retaining screws through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten (see Figure 16).
12. Reinstall all covers.
13. Reconnect power and air supply to the positioner and perform a stroke calibration.

Figure 19: Stem Position Sensor Orientation

8.7 Main PCB Assembly

The main printed circuit board (PCB) assembly contains the circuit boards and processors that perform control functions of the positioner. The main PCB is to be replaced as a unit. None of the components on the main PCB are serviceable. It consists of a controller board and a Fieldbus communication board.

Replacing Main PCB Assembly

To replace the main PCB assembly, refer to Figure 12 and 16 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

C WARNING: Observe precautions for handling electrostatically sensitive devices.

60

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the main cover.
4. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
5. Remove the retaining screw from the main PCB assembly.
6. Remove the five wire connections from the main PCB assembly and lift the main PCB out of the housing (see Figure 16).
7. Reinstall the five wire connections (see Figure 12) on the new main PCB.
8. Install the new main PCB into the housing. Insert the retaining screw through the board into the threaded boss and tighten, using a Phillips screwdriver. Do not over tighten.
9. Install the plastic board cover. Insert the three retaining screws through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten (see Figure 16).
10. Reinstall all covers.
11. Reconnect power and air supply to the positioner and reconfigure the positioner being sure to perform a stroke calibration.

8.8 Pressure Sensor Board

On advanced model Logix 3400IQ positioners, a pressure sensor board is installed in the positioner. The pressure sensor board contains two pressure sensors that measure the pressure on output ports 1 and 2. The main PCB electronics automatically senses the presence of the pressure sensor board. If present, the actuator pressure sensors are used in the positioner control algorithm to enhance valve stability. For optimal performance, the actuator pressure sensors need to be calibrated. The actuator pressure sensor calibration is performed using a 375 Handheld Communicator or Host configuration software.

In the standard model, the pressure sensor board is replaced by a plate that plugs the actuator pressure sensor ports. This plate can be replaced by a pressure sensor board to field-upgrade a standard model to an advanced model.

Removing the Pressure Sensor Board (Advanced Model)

To replace the pressure sensor board, refer to Figures 12, 16 and 21 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

C WARNING: Observe precautions for handling electrostatically sensitive devices.

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the main cover.
4. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
5. Disconnect the ribbon cable on the pressure sensor board from the PCB assembly (see Figure 12). Lifting the main board may make this easier.
6. Remove the two screws holding the pressure sensor board to the housing. Lift the metal stiffener plate off the pressure sensor board and set aside for future use.
7. Remove the pressure sensor board.

Removing the Pressure Sensor Plug Plate (Standard Model)

To upgrade a standard model to an advanced model, the pressure sensor plug plate must be removed and replaced by a pressure sensor board. The main PCB electronics automatically senses the presence of the pressure sensor board. If present, the actuator pressure sensors are used in the positioner control algorithm to enhance valve stability. For optimal performance, the actuator pressure sensors need to be calibrated. The actuator pressure sensor calibration is performed using a Handheld Communicator or host configuration software. To upgrade a standard model to an advanced model, refer to Figures 12, 16 and 21 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the main cover.
4. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
5. Remove the two screws holding the pressure sensor plug plate to the housing. Lift the metal stiffener plate off the pressure sensor plug plate and set aside for future use.
6. Remove the pressure sensor plug plate and discard.

Installing the Pressure Sensor Board (Advanced Model)

The pressure sensor board is installed on the advanced model only. To install the pressure sensor board, refer to Figures 12, 16 and 22 and proceed as outlined below. The following tools are required:

- Phillips screwdriver
- Torque wrench

C WARNING: Observe precautions for handling electrostatic sensitive devices.

1. Verify that the two pressure sensor 0 -rings (item 15) are in place in the housing.
2. Set the pressure sensor board assembly in place so that the 0 -rings make contact with the faces of the pressure sensors.
3. Place the metal stiffener plate (item 12) on top of the pressure sensor board over the pressure sensors and align the two holes in the pressure sensor plate with the threaded bosses in the housing.
4. Insert two screws through the stiffener plate and pressure sensor board into the threaded holes in the housing and tighten evenly, to 8 in-lb.
5. Connect the ribbon cable on the pressure sensor board to the main PCB assembly.
6. Install the plastic board cover. Insert the three retaining screws through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten.
7. Reinstall all covers.
8. Reconnect power and air supply to the positioner. Use the Host software or a handheld communicator to perform a pressure sensor calibration.

8.9 User Interface Board

The user interface board provides a connection point inside the explosion-proof housing for all hookups to the positioner.

Replacing the User Interface Board

To replace the user interface board, refer to Figures 6, 12, 16 and 22 and proceed as outlined below. The following tools are required:

- Phillips screwdriver

C WARNING: Observe precautions for handling electrostatic sensitive devices.

1. Make sure the valve is bypassed or in a safe condition.
2. Disconnect the power and air supply to the unit.
3. Remove the main cover.
4. Remove the plastic board cover by removing the three retaining screws (see Figure 16).
5. Remove the retaining screw from the main PCB assembly and lift the main PCB out of the housing (see Figure 16). It is not necessary to disconnect all of the wires, only the UI plug.
6. Remove the user interface cover.
7. Disconnect the field wiring from the user interface board terminals and remove the three screws that hold the user interface board in the housing (see Figure 6).
8. Remove the user interface board, carefully pulling the wiring through the bore.
9. Verify that the 0 -ring is in place in the counterbore in the positioner housing, or on the plug on the back of the UI tray.
10. Feed the wires on the back of the new user interface board through the passageway into the main chamber of the housing.
11. Set the user interface board in place and secure with three screws (see Figure 6).
12. Reconnect the field wiring to the user interface board terminals.
13. Install the main PCB into the housing. Insert the retaining screw through the board into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten.
14. Install the plastic board cover. Insert the three retaining screws through the plastic cover into the threaded boss and tighten evenly, using a Phillips screwdriver. Do not overtighten (see Figure 16).
15. Reinstall the UI wire connection (see Figure 12).
16. Reinstall all covers.

9 Optional Vented Design

NOTE: See Figures 19 and 20
A standard Logix 3400IQ positioner is vented directly to the atmosphere. When supply air is substituted with sweet natural gas, piping must be used to route the exhausted natural gas to a safe environment. This piping system may cause some positioner back pressure in the main chamber (from the modulator and regulator) and spool chamber (from the actuator). Back pressure limitations are described below.

Two chambers must be vented on the Logix 34001Q positioners: the main housing chamber and the spool valve chamber (Figures 20 and 21). The main chamber vent is located on the backside of the positioner (see Figure 20). Vented-design Logix 3400IQ positioners are supplied from the factory with a fitting installed in the main chamber vent. Connect the necessary tubing/piping to this fitting to route the exhausted natural gas to a safe environment.

The maximum allowable back pressure from the collection device on the main housing vent is 2.0 psig (0.14 barg). Vent flow rate is $0.5 \mathrm{std}^{\mathrm{ft}}{ }^{3} / \mathrm{min}$ (1.4 std liter $/ \mathrm{min}$).

C WARNING: The back pressure in the main housing must never rise above 2.0 psig (0.14 barg).

Figure 20: Main Housing Vent

Figure 21: Spool Cover Vent

The spool valve chamber (see Figure 21) must also be vented through the spool valve cover. Vented-design Logix 34001Q positioners are supplied from the factory with a fitting installed in the spool valve cover (item SKU 179477). Connect the necessary tubing/piping to this fitting to route the exhausted natural gas to a safe environment. The maximum allowable back pressure in the spool valve chamber is 8 psig (0.55 barg). Pressures greater than 8 psig will cause vented gas to leak past the spool cover 0 -ring to the atmosphere and will result in overshoot of the positioner.

Figure 22: Exploded Drawing

10 Parts List

Table XI: Parts

Item No.	Part	Item No.	Part
1	Housing Logix 3000IQ Positioner	28	Threaded Plug
2	Main Housing Cover	29	Main Vent Cover
3	O-ring, Main Housing Cover	30	Screw, Main Vent Cover
4	Screw, Anti-rotation	31	Driver Module Cover
5	Plastic Main PCB Cover	32	O-ring, Driver Module Cover
6	Screw, Main PCB Cover Short (2)	33	Driver Module Assembly
7	Screw, Main PCB Cover Long	34	Hex Barbed Fitting with Captive
8	Main PCB Assembly		O-ring
	Screw, Main PCB Assembly	35	Flexible Tubing
9	Retaining	36	Screw, Driver to Housing
11	Screw, Pressure Sensor Board (2)	37	Nylon Washer
12	Pressure Sensor Board Stiffener	38	Spool Valve
13	Pressure Sensor Board (Advanced	39	Spool Valve Block
	Only)	40	Screw, Spool Valve to Housing (2)
14	Pressure Sensor Plug Plate (Standard Only)	41	O-ring, Spool Valve (3)
15	O-ring, Pressure Sensor to Housing	42	Screw, Spool Valve Cover
15		43	Spool Valve Shroud
16	Pressure Regulator, 5 to 30 psig (Includes 20 -rings)	44	Spool Valve Cover
17	Screw, Regulator Plate to Housing (4)	45	Hydrophobic Filter, Spool Valve Chamber
		46	O-ring, Spool Valve Cover
18	Hex Barbed Fitting with Captive O-ring	47	Pressure Gauge, 0-160 psig (2)
19	Internal Filter	48	Air Screen (3)
20	O-ring, Interface Plate to Housing Seal	49	Screw, Position Feedback Potentiometer to Housing (2)
21	Customer Interface Cover	50	Metal Washer (2)
22	O-ring, Customer Interface Cover	51	Position Feedback Potentiometer
23	Screw, Anti-rotation	52	Feedback Shaft
24	Screw, User Interface Board (3)	53	Screw, Spring to Feedback Shaft
25	User Interface Board Potted Assembly	54	O-ring, Feedback Shaft
		55	Torsion Spring
26	O-ring, User Interface Board	56	E-ring

11 Logix 3400/Q Spare Parts Kits

(See Figure 22 for item numbers.)

Table XII: Spare Parts Kits

Item No.	Description	Quantity
Kit 2: Driver Module Assembly -40° to $80^{\circ} \mathrm{C}$ Kit, P/N 199786.999.000		
16	Pressure Regulator	1
17	Screw, Regulator to Housing	4
33	Driver Module Assembly	1
34	Hex Barbed Fitting w/ Captive 0 -ring	1
36	Screw, Driver to Housing	1
37	Nylon Washer	1
Kit 3: Spool Assembly Valve Kit, P/N 199787.999.000		
38	Spool	1
39	Spool Valve Block	1
40	Screw, Spool Valve to Housing	2
41	O-ring, Spool Valve	3
Kit 4: Pressure Regulator, P/N 215814.999.000		
16	Pressure Regulator with Captive 0-rings	1
17	Screw, Regulator to Housing	4

Item No.	Description	Quantity
Kit 5: Feedback Shaft Kit, P/N 199788.999.000		
52	Feedback Shaft	1
53	Screw, Spring to Feedback Shaft	1
54	O-ring, Feedback Shaft	1
55	Torsion Spring	1
56	E-ring	1
Kit 6: Feedback Shaft Kit (NAMUR), P/N		
218814.999 .000		

Item No.	Description	Quantity		
Kit 7: Soft Goods Kit, P/N 199789.999.000				
3	0-ring, Main Housing Cover	1		
15	0-ring, Pressure Sensor to Housing	2		
20	0-ring, Regulator to Housing	1		
22	0-ring, User Interface Cover	1		
26	0-ring, User Interface Board	1		
35	Flexible Tube	1		
37	Nylon Washer	1		
41	0-ring, Spool Valve to Housing	3		
45	Hydrophobic Filter, Spool Valve Chamber	1		
46	0-ring, Spool Valve Cover	1		
54	0-ring, Feedback Shaft	1		
Kit 8: Standard Model Pressure Sensor Plug Plate				
Kit, P/N 199790.999.000	2			
11	Screw, Pressure Sensor Board			2
14	Pressure Sensor Plug Plate	1		
15	0-ring, Pressure Sensor to Housing	2		

Item No.	Description	Quantity
Kit 9: Advanced Model Pressure Sensor Board Kit, P/N 199791.999.000		
11	Screw, Pressure Sensor Board	2
13	Pressure Sensor Board	1
15	O-ring, Pressure Sensor to Housing	2
Kit 10: Main PCB Assembly Kit, P/N 230226.999.000		
6	Screw, Main PCB Cover Short	2
7	Screw, Main PCB Cover Long	1
8	Main PCB	1
9	Screw, Main PCB Retaining Screw	1
Kit 11: User Interface Board Kit, P/N 230227.999.000		
24	Screw, User Interface to Housing	3
25	User Interface Board	1
26	O-ring, User Interface Board	1
Kit 13: Position Feedback Potentiometer Kit, P/N 199794.999.000		
49	Screw, Feedback Potentiometer to Housing	2
50	Metal Washer	2
51	Position Feedback Potentiometer	1

Valtek Mounting Kits

Table XIII: Valtek Linear Mounting Kits			
Spud	Standard	$\mathbf{2 5}$ in 2	
	164432		
2.00			
2.62			
2.88			
3.38			
4.75			
* 50 square", 2.00 spud with live loading re			

Spud	$25 \mathrm{in}^{2}$		$50 \mathrm{in}^{2 *}$		100-200 in^{2}	
	Standard	Handwheel	Standard	Handwheel	Standard	Handwheel
2.00	164432	164433	164434	164433		
2.62			164435	164436	164437**	164436
2.88					164437	164438
3.38					164439	164440
4.75					164439	164440

Table XIV: Valtork Rotary Mounting Kits *

12.2 Logix O.E.M. Mounting Kits

Table XV: Logix O.E.M. Mounting Kits

Brand	Model	Size		Kit	
	657 \& 667	30	213905	0.5" - 1.5" stroke	
		34	141410		
		40			
		50	171516	0.5" - 1.5" stroke	
			171517	2 " stroke	
		60	171516	0.5 - $1.5{ }^{\prime \prime}$ stroke	
			171517	2 " stroke	
		70	171518	4" stroke	
		80	171519		
	1250	225	173371		
		450			
		675			
	1052	33	171549	Rotary	
	657-8	40	173798		
$\frac{\mathscr{6}}{\stackrel{\pi}{2}}$	RC		171512		
	RD		178258		
	Slid-Std		173567		
난	Linear		178258		
$\begin{aligned} & \overline{\overline{0}} \\ & \sum_{0}^{01} \\ & \text { 후 } \end{aligned}$	VST-VA3R	17-in. dia.	173798		
	VSL-VA1D	12-in. dia.	173798		

[^1]Table XV: Logix O.E.M. Mounting Kits (continued)

Brand	Model	Size	Mounting Kit	
	37	9	171721	
		11		
		13	171720	
		18	173382	
		24	173896	
	38	11	173235	
		13	173234	
		15	186070	
		18	173382*	
		24	173896	
	71 Domotor	25	173325	
		50	173335	
		100	173336	
	88	6	171722	
		16	173827	
	47	B	173361	
	48	B	173361	
	"D" Domotor	200	175141	
	71-2057AB-D		176179	
	71-40413BD		176251	
	33	B	173298	
	35	4	173298	
		6		
		7		
	70	10	173298	
Valtek	Trooper		166636	0.75 " -1.50 " Std
즟	R314		141180	HD
¢	SNA115		NK313A	

[^2]Table XV: Logix O.E.M. Mounting Kits (continued)

Brand	Model	Size	Mounting Kit
Vangard	37/64		175128
Air-Torque	AT Series	AT0 - AT6	Consult factory
Automax	SNA Series	SNA3 - SNA2000	
	N Series	N250.300	
	R Series	R2-R5	
Bettis	RPC Series	RP - TPC11000	
	G Series	$\begin{aligned} & \text { G2009-M11 } \\ & \text { - G3020-M11 } \end{aligned}$	
EL-O-Matic	E Series	E25-E350	
	P Series	P35-P4000	
Hytork	XL Series	XL45-XL4580	
Unitorq	M Series	M20 - M2958	
Worcester	39 Series	2539-4239	

*Adjustable mounting kit 173798 may be needed if handwheels are used.

12.3 NAMUR Accessory Mounting Kit Part Numbers

Use prefix "NK" and choose bracket and bolt options from the following table.
Table XVI: NAMUR Accessory Mounting Kit Part Numbers

Bracket Option	Description
28	20 mm pinion $\times 80 \mathrm{~mm}$ bolt spacing
28	38 mm pinion $\times 80 \mathrm{~mm}$ bolt spacing
313	30 mm pinion $\times 80 \mathrm{~mm}$ bolt spacing
513	50 mm pinion $\times 130 \mathrm{~mm}$ bolt spacing
Bolt Option	Description
A	$10-24$ UNC bolting
B	$10-32$ UNF bolting
L	M5-.8 metric bolting
Example: NK313A, NAMUR Accessory Mounting Kit with 30 mm pinion $\times 80 \mathrm{~mm}$ bolt spacing and 10-24 UNC	
bolting.	

13 Frequently Asked Questions

Q: I set the Final Value Cutoff Low at 5 percent. How will the positioner operate?

A: Assume that the present command signal is at 50 percent. If the command signal is decreased, the positioner will follow the command until it reaches 5 percent. At 5 percent, the spool will be driven fully open or fully closed, depending on the air action of the valve, in order to provide full actuator saturation and tight shutoff. The positioner will maintain full saturation below 5 percent command signal. As the command increases, the positioner will remain saturated until the command reaches 6 percent (there is a 1 percent hysteresis value added by the positioner). At this point, the stem position will follow the command signal. While in Final Value Cutoff, the Logix 3400/Q LEDs will blink GGGY.

Q: I have Final Value Cutoff set to 3 percent but the valve will not go below 10 percent.

A: Is a lower soft stop enabled? The lower soft stop must be less than or equal to zero percent in order for the Final Value Cutoff to become active. If a positive lower soft stop is written, this stop will take priority over the Final Value Cutoff feature. When the lower soft stop is reached, the positioner will blink a GYYR code.

Q: Will soft stops prevent the valve from going to its fail position?
A: No.

Q: What is the difference between a model with Standard diagnostics and a model with Advanced diagnostics?

A: The model with Advanced diagnostics adds top and bottom actuator pressure sensors. This allows for more diagnostic calculations such as loss of pressure, friction, advanced signatures, and troubleshooting. The pressure sensors, if present, are also used in the positioner control algorithm to enhance valve stability.

Q: Can I upgrade from a Standard to an Advanced?
A: Yes. Referencing the IOM, an advanced pressure sensor board assembly can be purchased.
Simply replace the pressure sensor plug plate with the advanced pressure sensor board. Perform an actuator pressure calibration.

14 How to Order

Table XVII: How to Order

Selection		Code	Example
		3	ω
Protocol	Foundation Fieldbus*	4	$\stackrel{ }{ }$
Electronic Hardware Options	Standard Diagnostics*	0	-
	Advanced Diagnostics	1	
Housing \& Brand	Aluminum, White Paint (Valtek)*	0	0
	Stainless Steel, No Paint (Valtek)	1	
	Aluminum, Black Paint (Automax)	2	
	Aluminum, Food Grade White Paint (Automax)	3	
	Aluminum, Accord (Balck Paint)	4	
	Aluminum, Accord (Food-Grade White Paint)	5	
	Aluminum - Off Shore Paint	6	
		10	\%
Certifications	Explosionproof Class I, Div 1, Groups B, C, D DIP Class IIIIII Division 1 E, F, G	01	-
	Intrinsically Save Class I, Dive 1, Groups A,B,C,D Nonincendive Class I,II,III Division 2 A,B,C,D,E,F,G	02	
	INMETRO BR-EX ia IIC T4/T5; BR-Ex d IIB+H2 T5 (South America)	06	
	Flame Proof EEx d IIB+H2; ATEX II 2 G	07	
	General Purpose	14	
	Ex ia IIC, ATEX II 1 G	15	
	Ex nA nL IIC, ATEX II 3 G	20	
	IECEx Ex ia IIC	21	
Shaft/Feedback Shaft	DD 316 SSI Shaft (Valtek Standard)*	D6	8
	NAMUR 316 SSI (VDINDE 3845)	N6	
Conduit Connections/ Threaded Connections	1/2" NPT	E	m
	M20	M	
Action	4-way (Double-Acting)	04	
	3 -way (Single-Acting)	03	
	4-way Vented (Double-Acting)	4 V	
	3-way Vented (Single-Acting)	3 V	
Temperature	Low $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \text { to } 185^{\circ} \mathrm{F}\right)^{*}$	40	A
Gauges	Gauges (Valtek standard)*	OG	¢
	SS with SS internals, psi (bar/kPa)	OS	
	SS with SS internals, psi ($\mathrm{kg} / \mathrm{cm}^{2}$)	KS	
	SS with brass internals, psi (kg/cm²)	KG	
	Stainless Steel	OS	
	No Gauges	0 U	
Special Options	None*	00	8
	Remote Mount Feedback (Only available with Certification Option 14)	RM	
	Fail Option Feedback**	SF	
*Indicates Standard Product Configuration			
**Contact factor	y before specifying this option		

15 Troubleshooting

Table XVIII: Troubleshooting

Failure	Probable Cause	Corrective Action
No LED is blinking	Voltage of supply source is not high enough	Verify that voltage source can supply at least 9 V
	Current draw incorrect	Verify current draw of device $(23 \mathrm{~mA})$ and that of other devices on the loop aren't pulling too much current
Erratic communications	Maximum cable length or cable impedance exceeded	Check cable conduction size, length and capacitance. Refer to Section 6.4, "Cable Requirements"
	Improper grounding	Terminate and ground segment properly.
	Interference with I.S. barrier	Must use FF-compatible I.S. barrier
	Host FB card not configured or connected correctly	Check connections and configurations of card
Unit does not respond to Final Value commands	Unit is in Auto mode	Put in OOS mode
	Error occurred during calibration	Check blink codes on positioner and correct calibration error. Recalibrate
Valve position reading is not what is expected	Positioner tubing backwards	Re-tube the actuator
	Stem position sensor mounting is off 180°	Remount position sensor
	Stroke not calibrated	Perform RE-CAL
	Tight shutoff is active	Verify settings using PC or handheld software
	Customer characterization or soft stops active	Verify customer characterization and soft stops

Failure	Probable Cause	Corrective Action
	Stroke not calibrated	Check DIP switch settings and calibrate valve stroke
	Inner-loop hall sensor not connected	Verify hardware connections air action entered in software
	Actuator tubing backward	Check ATO (Air-to-open) and ATC (Air-t-close) settings. Recalibrate
	Driver module Electro-pneumatic converter malfunctioning	Verify ATO/ATC actuator tubing
	Replace driver module Control parameter inner--loop offset is too high/low	Adjust inner-loop offset and see if proper control resumes
Sticking or hunting operation of the positioner	Packing friction high	Check air supply for proper filtering and meeting ISA specifications ISA-7.0.01. Check the spool valve for contamination
	Control tuning parameters not correct	Adjust gain settings using local gain switch
	Enable the stability DIP switch on the local interface and recalibrate. If problem persists, enable pressure control with handheld communicator or SoftTools and recalibrate	

* Final Value Cutoff

NOTE: Refer to blink codes for self diagnostics of other errors. See document \#VLAIM0046. Refer to Logix 3400/1400 Reference Manual for Fieldbus related troubleshooting.

FLOWSERVE

United States

Flowserve Corporation
Flow Control
1350 N. Mt. Springs Parkway
Springville, UT 84663
Phone: 801-489-8611
Fax: 801-489-3719

To find your local Flowserve representative:

For more information about Flowserve Corporation, visit www.flowserve.com or call USA 18002256989

Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function safely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Although Flowserve can (and often does) provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser/user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the Installation Operation Maintenance (IOM) instructions included with the product, and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and upgrading its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

[^0]: Continued on Page 42

[^1]: Continued on page 72

[^2]: Continued on page 73

