TECHNICAL BULLETIN

Worcester[®] 51/52 Series Reduced Port Flanged Ball Valve

Experience In Motion

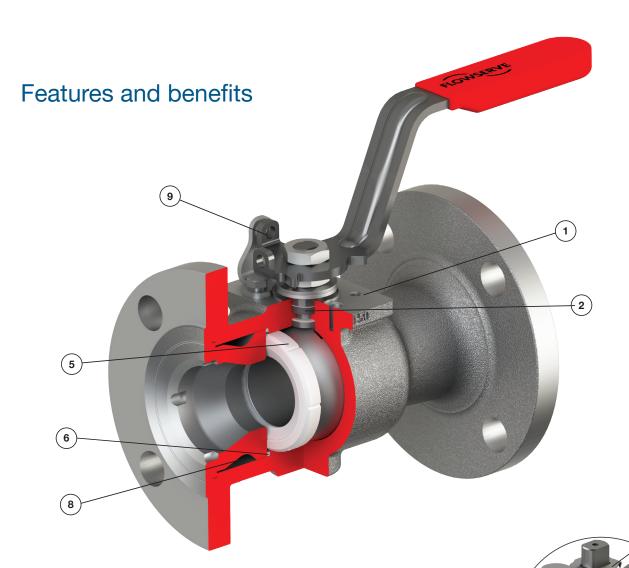
Designed for global availability and lower total costs

The proven Worcester 51/52 series flanged ball valve from Flowserve has been engineered for worldwide availability and shorter lead times by standardizing its design, materials and construction.

As a result, the 51/52 series valve minimizes fugitive emissions, enhances safety, and ensures regulatory and standards compliance to help companies achieve decarbonization and sustainability objectives. The globalized design meets critical certifications and standards in all jurisdictions.

Specifying the 51/52 series valve also enables companies to lower the total cost of ownership owing to the standardization and interchangeability of parts, which are available in all regions.

In addition, Flowserve provides superior technical support and service available from a global network of Quick Response Centers (QRCs).


Standardized for reliability, compliance and safety

To avoid regulatory and financial risks that can occur because of fugitive emissions, Flowserve designed the Worcester 51/52 series valve to provide superior leakage resistance with a bubble-tight shutoff and a more robust, live-loaded packing design. Safety has been enhanced for end users as a result of the threaded end plug design, which ensures positive retention and eliminates any blowout risk.

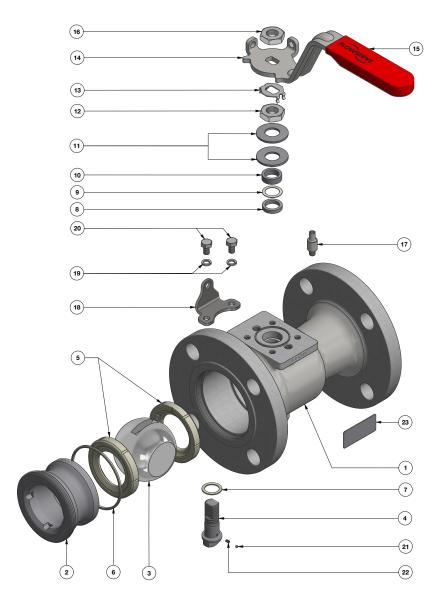
Industries and applications

Chemical processing	Petrochemicals	Energy	Other industries
 Thermal fluids Oxygen services Ammonia Chlorine Hydrogen peroxide Phosgene 	BTXEthylenePolyolefins/aromatics	 Gasification Hydrogen Liquefied natural gas (LNG) Steam 	 Defense Food and beverage Industrial gases Pharmaceuticals Water

- **1 Actuator mounting** conforms to ISO 5211 and Shell MESC SPE 77/300 for ease of actuation.
- **2 Standard anti-blowout, duplex stainless steel stem** provides greater safety, increased maximum allowable stem torque (MAST) and excellent durability.
- 3 Locking clip (see inset) maintains position of the gland nut during actuation for long, leak-free performance; the gland nut does not need to be removed for actuator mounting, thereby maintaining valve integrity.
- **4 Live-loaded packing** (see inset) for enhanced reliability; conforms to API 641 and ISO 15848 fugitive emissions certification standards.
- **5 Seat design** is available in a wide range of materials to meet specific application requirements; the cavity pressure-relieving (CPR) design ensures that pressure generated through media expansion when the valve is closed is safely relieved upstream.

- 6 Body seals are PTFE as standard with fire-safe integrity maintained with metal-to-metal secondary sealing; compliant with API 607, API 608, API 641, ISO 17292 and ISO 15848.
- 7 Anti-static design is standard.
- 8 Threaded insert provides leak-tight positive retention and improved customer safety.
- 9 Locking wrench is standard on sizes through NPS 4 (DN100).

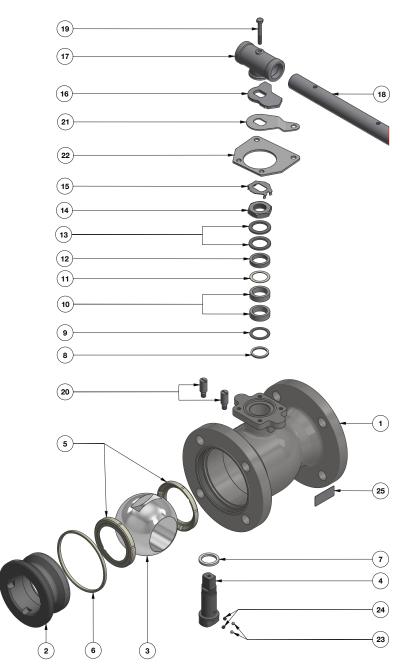
Optional O-ring stem seal is available for improved stem sealing performance, particularly in vacuum applications.


3

7

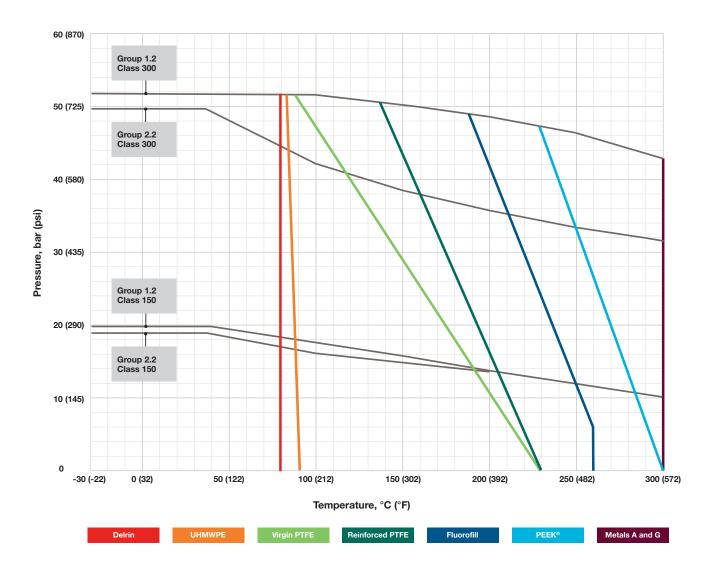
4

Parts and materials lists


Sizes DN15 to DN50 (NPS 1/2 to 2)

Item	Description	Material						
1	Body⁺	ASTM A351 CF8M Stainless Steel						
2	Insert [*]	ASTM A351 CF8M Stainless Steel						
3	Ball	ASTM A479 316 or A351 CF8M Stainless Steel						
4	Stem	ASTM A479 S31803 Duplex Stainless Steel						
5	Seat	Virgin PTFE						
6	Body Seal	Virgin PTFE						
7	Stem Thrust Seal	25% Glass-Filled PTFE						
8	Gland Packing	Flexible Graphite						
9	Bearing Washer	25% Glass-Filled PTFE						
10	Gland	AISI 316 Stainless Steel						
11	Belleville Washer	Stainless Steel						
12	Gland Nut	Stainless Steel						
13	Gland Nut Locking Clip	Stainless Steel						
14	Locking Wrench	Stainless Steel						
15	Wrench Sleeve	Vinyl Plastisol						
16	Wrench Nut	Stainless Steel						
17	Stop Pin	Stainless Steel						
18	Locking Plate	Stainless Steel						
19	Washers	Stainless Steel						
20	Hex Head Screws	Stainless Steel						
21	Anti-static Ball	Stainless Steel						
22	Anti-static Spring	Stainless Steel						
23	Identification Plate	Stainless Steel						

*Body and insert available in LCB and other alloys


Sizes DN80 to DN200 (NPS 3 to 8)

Item	Description	Material
1	Body⁺	ASTM A351 CF8M Stainless Steel
2	Insert*	ASTM A351 CF8M Stainless Steel
3	Ball	ASTM A351 CF8M Stainless Steel
4	Stem	ASTM A479 S31803 Duplex Stainless Steel
5	Seat	Virgin PTFE
6	Body Seal	Virgin PTFE
7	Stem Thrust Seal	25% Glass-Filled PTFE
8	Secondary Stem Seal	Virgin PTFE
9	Stem Location Ring	Stainless Steel
10	Gland Packing	Flexible Graphite
11	Bearing Washer	25% Glass-Filled PTFE
12	Gland	AISI 316 Stainless Steel
13	Belleville Washer	Stainless Steel
14	Gland Nut	Stainless Steel
15	Gland Nut Locking Clip	Stainless Steel
16	Stop Plate	AISI 316 Stainless Steel
17	Wrench Head	Stainless Steel
18	Wrench Handle	Stainless Steel
19	Hexagon Headed Bolt	Stainless Steel
20	Stop Pin	Stainless Steel
21	Moving Plate	Stainless Steel
22	Fixed Plate	Stainless Steel
23	Anti-static Ball	Stainless Steel
24	Anti-static Spring	Stainless Steel
25	Identification Plate	Stainless Steel

Body and insert available in LCB and other alloys

Pressure/temperature ratings

Material group pressure-temperature ratings are taken from ASME B16.34.

- Group 1.2 represents our dual-certified LCB/LCC and WCB/WCC materials.
- Group 2.2 represents our CF8M material.
- See page 7 for maximum seat temperature limits.

® PEEK is a registered trademark of Victrex plc Corp.

Seat materials

Refer to page 6 to see pressure/temperature curves for each seat material.

Delrin (D)

Delrin, also known as POM or acetal homopolymer, is a durable and tough low-friction material. Its superior creep resistance means it performs excellently in high-pressure applications.

Maximum temperature rating of 80°C (180°F)

UHMWPE (U)

Ultra-high molecular weight polyethylene (UHMWPE) offers good performance characteristics in applications where PTFE is not suitable, e.g., tobacco duty. It also had good abrasion resistance.

Maximum temperature rating of 90°C (200°F)

Virgin PTFE (T)

Virgin PTFE, the most common sealing material, is suitable for almost all media since it has excellent chemical resistance. It also has an exceptionally low coefficient of friction, allowing for low valve operating torque.

Maximum temperature rating of 230°C (450°F)

Reinforced PTFE (R)

Seats made from PTFE reinforced with glass are stronger and more wear-resistant than virgin PTFE seats, making them more suitable for applications involving higher pressure/ temperature ratings or high cycling.

Maximum temperature rating of 230°C (450°F)

Fluorofill/Polyfill (P)

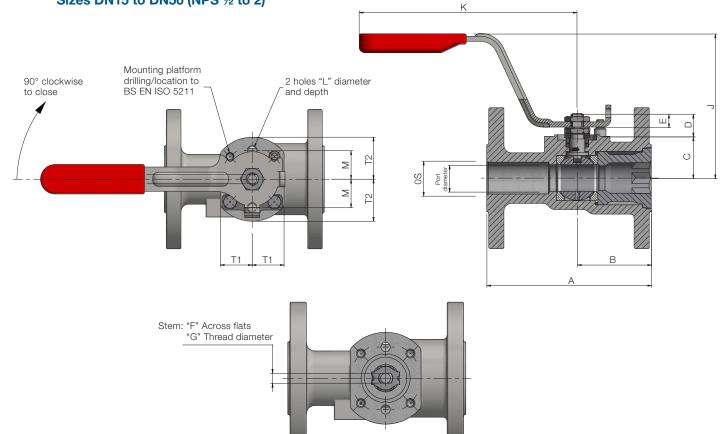
Seats made from PTFE reinforced with carbon, glass and graphite have outstanding dimensional stability across a broad temperature range. This material is well-suited for a variety of thermal services, including steam and cryogenic applications. Due to its high cycling capabilities, Fluorofill seats are recommended for modulating control applications.

Maximum temperature rating of 260°C (500°F)

PEEK (X)

Polyether ether ketone (PEEK) demonstrates outstanding pressure capabilities at elevated temperatures, and that is why it has the highest P/T rating of our non-metallic seat materials. It also has very good chemical and abrasion resistance.

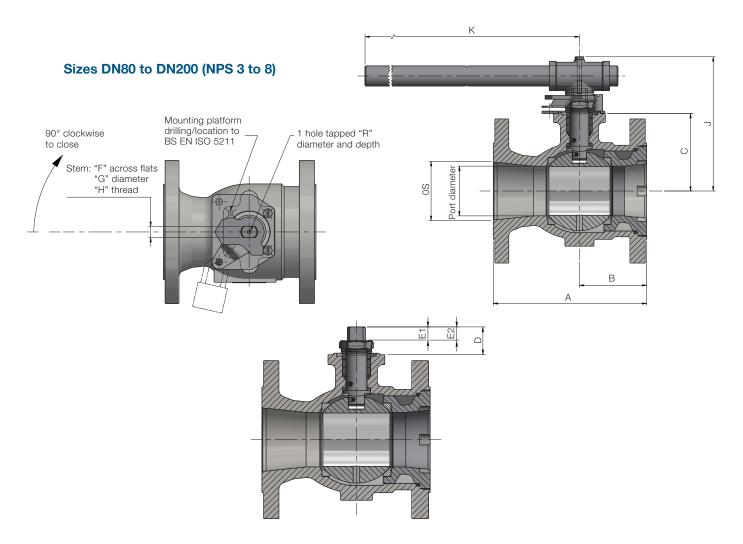
Maximum temperature rating of 315°C (600°F)


Metal (A or G)

Seats made from 316L sintered metal impregnated with PTFE (A) or graphite (G) help to reduce torque and improve operability. The strength of the metal creates seats which offer excellent abrasion resistance and pressure-handling capabilities at elevated temperatures.

Maximum temperature rating of 315°C (600°F)

Dimensions


Sizes DN15 to DN50 (NPS 1/2 to 2)

Dimensions indicated in mm (in.)

Valve	Size	Valve	Min.					Е	Ste	m			L		s			ISO	Approx.
DN	NPS	Series	Port Ø	A	В	C ⁽¹⁾	D ⁽¹⁾	Min.	F ⁽¹⁾	G Thread	J	K	Thread and Depth	М	ø	T1	T2	Size	Weight kg (lb)
45		F51	11.1 (0.437)	108.0 (4.252)	52.5 (2.067)	22.96 (0.904) 22.70 (0.894)	18.0 (0.709) 17.0 (0.669)	8.1 (0.319)	7.00 (0.276) 6.96 (0.274)	M10 x 1.25p	102.6 (4.039)	155 (6.102)	M6 x 1.0p x 9.2 (0.362) Min.	16.9 (0.665)	15 (0.591)	19.2 (0.756)	23.25 (0.915)	F03	1.8 (4.0)
15	1/2	F52	11.1 (0.437)	140.0 (5.512)	52.5 (2.067)	22.96 (0.904) 22.70 (0.894)	18.0 (0.709) 17.0 (.669)	8.1 (0.319)	7.00 (.276) 6.96 (0.274)	M10 x 1.25p	102.6 (4.039)	155 (6.102)	M6 x 1.0p x 9.2 (0.362) Min.	16.9 (0.665)	15 (0.591)	19.2 (0.756)	23.25 (0.915)	F03	2.4 (5.3)
20	3/4	F51	14.4 (0.567)	117.0 (4.606)	54.6 (2.15)	22.96 (0.904) 22.70 (0.894)	18.0 (0.709) 17.0 (0.669)	8.1 (0.319)	7.00 (0.276) 6.96 (0.274)	M10 x 1.25p	102.6 (4.039)	155 (6.102)	M6 x 1.0p x 9.2 (0.362) Min.	16.9 (0.665)	20 (0.787)	19.2 (0.756)	23.25 (0.915)	F03	2.2 (4.9)
20	94	F52	14.4 (0.567)	152.0 (5.984)	54.6 (2.15)	22.96 (0.904) 22.70 (0.894)	18.0 (0.709) 17.0 (0.669)	8.1 (0.319)	7.00 (0.276) 6.96 (0.274)	M10 x 1.25p	102.6 (4.039)	155 (6.102)	M6 x 1.0p x 9.2 (0.362) Min.	16.9 (0.665)	20 (0.787)	19.2 (0.756)	23.25 (0.915)	F03	3.6 (7.9)
25	-	F51	20.7 (0.815)	127.0 (5.000)	57.2 (2.252)	32.34 (1.273) 32.08 (1.263)	18.0 (0.709) 17.0 (0.669)	10.4 (0.409)	7.00 (0.276) 6.96 (0.274)	M10 x 1.25p	111.6 (4.394)	168 (6.614)	M8 x 1.25p x 9.7 (0.382) Min.	22.25 (0.876)	27 (1.063)	25.25 (0.994)	32.8 (1.291)	F05	3.1 (6.8)
25		F52	20.7 (0.815)	165.0 (6.496)	68.2 (2.685)	32.34 (1.273) 32.08 (1.263)	18.0 (0.709) 17.0 (0.669)	10.4 (0.409)	7.00 (0.276) 6.96 (0.274)	M10 x 1.25p	111.6 (4.394)	168 (6.614)	M8 x 1.25p x 9.7 (0.382) Min.	22.25 (0.876)	27 (1.063)	25.25 (0.994)	32.8 (1.291)	F05	4.8 (10.6)
40	1½	F51	31.8 (1.252)	165.0 (6.496)	66.6 (2.622)	42.33 (1.667) 42.07 (1.656)	27.0 (1.063) 26.0 (1.024)	11.8 (0.465)	9.50 (0.374) 9.46 (0.372)	M14 x 1.5p	130.9 (5.154)	193 (7.598)	M8 x 1.25p x 9.7 (0.382) Min.	22.25 (0.876)	40 (1.575)	25.25 (0.994)	32.8 (1.291)	F05	5.6 (12.3)
40	1 //2	F52	31.8 (1.252)	190.0 (7.480)	66.6 (2.622)	42.33 (1.667) 42.07 (1.656)	27.0 (1.063) 26.0 (1.024)	11.8 (0.465)	9.50 (0.374) 9.46 (0.372)	M14 x 1.5p	130.9 (5.154)	193 (7.598)	M8 x 1.25p x 9.7 (0.382) Min.	22.25 (0.876)	40 (1.575)	25.25 (0.994)	32.8 (1.291)	F05	8.8 (19.4)
50	2	F51	38.2 (1.504)	178.0 (7.008)	70.9 (2.791)	47.06 (1.853) 46.80 (1.843)	27.0 (1.063) 26.0 (1.024)	11.8 (0.465)	9.50 (0.374) 9.46 (0.372)	M14 x 1.5p	135.7 (5.343)	193 (7.598)	M8 x 1.25p x 9.7 (0.382) Min.	22.25 (0.876)	50 (1.969)	27 (1.063)	38.75 (1.526)	F05	8.0 (17.6)
50	2	F52	38.2 (1.504)	216.0 (8.504)	70.9 (2.791)	47.06 (1.853) 46.80 (1.843)	27.0 (1.063) 26.0 (1.024)	11.8 (0.465)	9.50 (0.374) 9.46 (0.372)	M14 x 1.5p	135.7 (5.343)	193 (7.598)	M8 x 1.25p x 9.7 (0.382) Min.	22.25 (0.876)	50 (1.969)	28 (1.102)	38.75 (1.526)	F05	10.9 (24.0)

(1) Dimensions C, D and F are indicated for the minimum and maximum tolerances to support mounting kits and automation. All other dimensions indicate their centerline. (2) ISO platform dimensions as per ISO 5211.

Dimensions indicated in mm (in.)

Valve	Size	Valve Series	Min. Port	A	в		D ⁽¹⁾	E1 Min.	E2 Min.		Stem							к	sø	R Thread and Depth	ISO Size ⁽²⁾	Approx. Weight kg (lb)
DN	NPS	Cenes								F ⁽¹⁾	GØ	H Thread				Thread and Depart	OILCO	kg (lb)				
80	3	F51	65.8 (2.591)	203.0 (7.992)	89.0 (3.504)	102.7 (4.043) 102.3 (4.028)	34.0 (1.339) 33.0 (1.299)	16.6 (0.654)	17.1 (0.673)	14.99 (0.590) 14.95 (0.589)	21.95 (0.864) 21.85 (0.860)	M24 x 2.0p	175.7 (6.917)	349.0 (13.74)	78.2 (3.079)	M6 x 1.0p x 12.0 (0.472) Min.	F07	16.8 (37.0)				
00	3	F52	64.2 (2.528)	282.0 (11.102)	89.0 (3.504)	102.7 (4.043) 102.3 (4.028)	34.0 (1.339) 33.0 (1.299)	16.6 (0.654)	17.1 (0.673)	14.99 (0.590) 14.95 (0.589)	21.95 (0.864) 21.85 (0.860)	M24 x 2.0p	175.7 (6.917)	349.0 (13.74)	78.5 (3.090)	M6 x 1.0p x 12.0 (0.472) Min.	F07	25.1 (55.3)				
100	4	F51	76.5 (3.012)	229.0 (9.016)	107.0 (4.213)	112.2 (4.417) 111.8 (4.402)	34.0 (1.339) 33.0 (1.299)	16.6 (0.654)	17.1 (0.673)	14.99 (0.590) 14.95 (0.589)	21.95 (0.864) 21.85 (0.860)	M24 x 2.0p	185.2 (7.291)	349.0 (13.74)	101.9 (4.012)	M6 x 1.0p x 12.0 (0.472) Min.	F07	25.4 (56.0)				
100	4	F52	76.5 (3.012)	305.0 (12.008)	107.0 (4.213)	119.7 (4.713) 119.3 (4.697)	45.0 (1.772) 43.0 (1.693)	22.0 (0.866)	22.6 (0.890)	18.99 (0.748) 18.94 (0.746)	27.95 (1.100) 27.85 (1.096)	M30 x 2.0p	206.7 (8.138)	557.0 (21.929)	104.5 (4.114)	M6 x 1.0p x 12.0 (0.472) Min.	F10	40.2 (88.6)				
150®	6(3)	F51	102.3 (4.028)	267.0 (10.512)	129.0 (5.079)	140.4 (5.528) 140.0 (5.512)	45.0 (1.772) 43.0 (1.693)	24.7 (0.972)	21.5 (0.846)	18.99 (0.748) 18.94 (0.746)	27.95 (1.100) 27.85 (1.096)	M30 x 2.0p	-	-	154 (6.063)	M6 x 1.0p x 12.0 (0.472) Min.	F10	42.0 (92.6)				
150%	0.00	F52	102.3 (4.028)	403.0 (15.866)	129.0 (5.079)	146.9 (5.783) 146.5 (5.768)	56.0 (2.205) 54.0 (2.126)	27.1 (1.067)	27.1 (1.067)	23.99 (0.944) 23.94 (0.943)	36.00 (1.417)	M36 x 2.0p	-	-	154 (6.063)	M8 x 1.25p x 12.0 (0.472) Min.	F12	73.1 (161.2)				
200(3)	8(3)	F51	153 (6.024)	292.0 (11.496)	144.5 (5.689)	182.2 (7.173) 181.8 (7.157)	55.8 (2.197) 54.0 (2.126)	26.9 (1.059)	26.9 (1.059)	23.99 (0.944) 23.94 (0.943)	36.00 (1.417)	M36 x 2.0p	-	-	206.5 (8.13)	M8 x 1.25p x 12.0 (0.472) Min.	F12	75.5 (166.5)				
2000	0(0)	F52	153 (6.024)	419.0 (16.496)	144.5 (5.689)	194.4 (7.654) 194.0 (7.638)	69.0 (2.717) 67.0 (2.638)	35.0 (1.378)	35.0 (1.378)	31.99 (1.259) 31.93 (1.257)	48.00 (1.889)	M48 x 3.0p	-	-	206.5 (8.13)	M8 x 1.25p x 12.0 (0.472) Min.	F14	121.3 (267.4)				

(1) Dimensions C, D and F are indicated for the minimum and maximum tolerances to support mounting kits and automation. All other dimensions indicate their centerline. (2) ISO platform dimensions as per ISO 5211.

(3) DN150 (NPS 6) and DN200 (NPS 8) have gearboxes as standard. Consult factory for gearbox dimensions.

Technical information

Standards of compliance

	BS EN ISO 17292 and API 608						
	Pressure Equipment Directive 2014/68/EU						
	Pressure Equipment Regulations SI 2016						
	Assessment Category: Pressure Accessory, Group 1 GAS, Table 6, Module 'H', Catgory III						
Valve Specification	SIL 3 Capable						
	TSG						
	FM						
	UL						
	CRN						
	TR CU 010/012/032						
E (F51 Series: BS EN 558-2 and ASME B16.10						
Face-to-face	F52 Series: BS EN 558-2 and ASME B16.10						
	BS EN 1759-1 and ASME B16.5 CL150						
Flanged Connections	BS EN 1759-1 and ASME B16.5 CL300						
Fugitive Emissions	ISO 15848: Class BH and API 641						
Surface Quality	MSS SP-55						
Fire Test	API 607 and ISO 10497						
Pressure Test	BS EN 12266-1, ISO 5208 and API 598						
Sour Service	NACE MR0175 and ISO 15156 or MR0103						

Flow coefficients

Valve	Size	Flow Co	efficients	Equivalent Length of Pipe				
DN	NPS	Cv ⁽¹⁾	Kv ⁽²⁾	m	ft			
15	1⁄2	8	7	1.19	3.9			
20	3/4	12	10	2.65	8.7			
25	1	32	28	1.10	3.6			
40	1½	82	71	1.13	3.7			
50	2	120	104	1.98	6.5			
80	3	350	303	2.16	7.1			
100	4	720	623	2.10	6.9			
150	6	1,020	882	6.22	20.4			
200	8	1,800	1,557	11.49	37.7			

(1) Cv: Flow in US gpm (measured with a pressure drop across the valve of 1 psi)

Torque values

Valve	Valve Size Valve Maximum Allowable Stem Torque (MA				Break-to-Open Torq	ue With PTFE Seat ⁽²⁾	Gland Nut Tightening Torque				
DN	NPS	Series	Nm	inIb	Nm	inlb	Nm	inIb			
15		51	40	354	5	44	451.00	40 to 53			
15	1/2	52	40	354	5	44	4.5 to 6.0	40 to 53			
20	34	51	40	354	5	44	4.5 to 6.0	40 to 53			
20	94	52	40	354	5 44		4.5 10 6.0	40 10 53			
25	1	51	40	354	7	62	551.75	40.1.00			
25	1	52	40	354	9	81	5.5 to 7.5	49 to 66			
40		51	110	974	19	168	01.44	74 1. 07			
40	1½	52	110	974	26	230	8 to 11	71 to 97			
50	2	51	110	974	24	212	8 to 11	71 to 97			
50	2	52	110	974	32	283	8.011	/109/			
80	3	51	609	5,390	72	637	27 to 32	239 to 283			
80	3	52	609	5,390	105	929	27 to 32	239 to 283			
100		51	609	5,390	130	1,151	071.00	000 1. 000			
100	4	52	1,046	9,256	190	1,682	27 to 32	239 to 283			
		51	1,046 9,256 276 2,443		2,443						
150	6	52	52 1,568 13,878		435	3,850	36 to 43	319 to 381			
200		51	1,568	13,878	480	4,248	444-50	389 to 443			
200	8	52	4,249	37,607	675	5,974	44 to 50	369 10 443			

(1) MAST values calculated using the standard duplex stainless steel stem material

(2) Duty factor = 0; F51 @ 20 bar; F52 @ 50 bar; values are from AUTOSIZE 4.3; consult factory for other seat materials

⁽²⁾ Kv: Flow in m³/h (measured with a pressure drop across the valve of 1 bar)

Product code

Example 1:											<u>150</u> 13	14
Example 2:	 _	<u>52</u> З	_	_	_	_	 _	7 10	_	_	300 13	14

1. Size

Code	DN	NPS
05	15	1/2
07	20	3⁄4
10	25	1
15	40	11/2
20	50	2
30	80	3
40	100	4
60	150	6
80	200	8

2. Variant

- F Fire-safe
- CF Cryogenic fire-safe, including bonnet extension
- EF EnviroSafe fire-safe
- S Shell-compliant
- V V-Flow CPT control valve

3. Series

- 51 Class 150 one-piece valve
- 52 Class 300 one-piece valve

4. Body

- 4 WCB/WCC
- 5 LCB/LCC
- 6 CF8M
- 7 Monel®
- A Alloy 20
- C Hastelloy® C

5. End/insert

- 4 WCB/WCC
- 5 LCB/LCC
- 6 CF8M
- 7 Monel
- A Alloy 20
- C Hastelloy C

6. Ball

- 6 CF8M
- 7 Monel
- A Alloy 20
- C Hastelloy C

7. Stem

- 6 Stainless steel(1)
- **Q** 17-4PH
- 7 Monel⁽²⁾
- A Alloy 20⁽²⁾
- C Hastelloy C⁽²⁾

8. Seat

- D Delrin
- T V-PTFE
- R Reinforced PTFE
- P Fluorofill/Polyfill
- U UHMWPE
- X PEEK
- A Metal impregnated with PTFE
- **G** Metal impregnated with graphite

9. Body seal

T V-PTFE

10. Thrust seal

7 25% glass PTFE

11. Secondary stem seal/O-ring (optional)⁽³⁾

- T V-PTFE
- V FKM

12. Gland/stem packing

Z Graphite

13. End connection/pressure class

150 ANSI B16.5 Class 150**300** ANSI B16.5 Class 300

14. Special

Consult factory for "Special" options.

Note: The 51/52 series valves include a gearbox as standard for sizes DN150 (NPS 6) or larger. This is not called out in the product code because it is a standard feature. Likewise, locking wrenches are included as standard for all valve sizes up to DN100 (NPS4).

- Stainless steel stem material grade is selected based on stem strength and end use application requirements. Duplex as standard.
- (2) Depending on end use conditions, these stem materials may not comply with all the requirements of ISO 17292 or API 608.
- (3) Valve sizes DN50 (NPS 2) or below do not contain a secondary stem seal. As a result, this is reflected in the product code as a dash (-) to represent 'no option'.
- (4) Consult factory for other build configurations and materials.

Hastelloy is a registered trademark of Haynes International.
 Monel is a registered trademark of International Nickel Co.

Digitize operations to improve uptime and yield at lower cost

Get the insights and tools needed to monitor, analyze and predict the performance of the Worcester 51/52 series valve with RedRaven from Flowserve, an end-to-end predictive maintenance solution.

Pairing a 51/52 series valve with a Logix[™] 3800 digital positioner from Flowserve enables plant operators to leverage the internet of things (IoT) for a connected platform of smart products, software and services. They can quickly respond to equipment issues in order to minimize disruptions and downtime.

The Logix 3800 digital positioner — like most Flowserve fluid motion and control equipment — is RedRaven Ready. That means it's designed and built to accept RedRaven wired or wireless sensors using cloud architecture for condition

productivity and reliability.

monitoring and predictive analytics services.

RedRaven provides clear insights that can enable companies to significantly improve equipment, process and system efficiency,

Contact your Flowserve representative or visit <u>https://www.flowserve.com/redraven</u> for more information.

Headquarters

Flowserve Corporation 5215 North O'Connor Blvd. Suite 700 Irving, Texas 75039-5421 USA

North America Cookeville, TN USA

Telephone: +1-931-432-4021

EMEA

Haywards Heath United Kingdom Telephone: +44-(0)-1444-314400

VATB000932-03 (EN/A4) February 2024

Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function stely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Atthough Flowserve can provide general guidelines, it cannot provide specific data and warings for all possible applications. The purchaser/user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the Installation Instructions included with the product and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and upgrading its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

©2024 Flowserve Corporation. All rights reserved. This document contains registered and unregistered trademarks of Flowserve Corporation. Other company, product, or service names may be trademarks or service marks of their respective companies.